越来越多的公共数据集显示出对自动器官细分和图检测的显着影响。但是,由于每个数据集的大小和部分标记的问题,以及对各种肿瘤的有限侵入,因此所得的模型通常仅限于细分特定的器官/肿瘤,以及ig- ignore ignore ignore的解剖结构的语义,也可以将其扩展到新颖的Domains。为了解决这些问题,我们提出了剪辑驱动的通用模型,该模型结合了从对比的语言图像预训练(剪辑)到细分模型中学到的文本嵌入。这个基于夹子的标签编码捕获了解剖学关系,使模型能够学习结构化特征嵌入和段25个器官和6种类型的肿瘤。提出的模型是从14个数据集的组装中开发的,使用总共3,410张CT扫描进行培训,然后对3个附加数据集进行了6,162个外部CT扫描进行评估。我们首先在医疗细分十项全能(MSD)公共排行榜上排名第一,并在颅库(BTCV)之外实现最先进的结果。此外,与数据集特异性模型相比,大学模型在计算上更有效(更快6英制),从不同站点进行CT扫描更好,并且在新任务上表现出更强的传输学习绩效。
心电图(ECG)是一种捕获心脏活动的电测量,是诊断心血管疾病(CVD)的金标准。但是,由于ECG需要使用用户参与,因此不可避免地进行心脏监测。相比之下,光电学(PPG)提供了易于收集的数据,但其精度有限限制了其临床用法。为了确定这两个信号的优势,最近的研究不适合将PPG信号重新构成到ECG的各种深度学习技术;但是,缺乏文本信息以及降低噪声生物医学信号的能力最终会限制模型的影响。在这项研究中,我们提出了一种基于变压器的新型体系结构,可从PPG重建ECG,并将PPG和重建的ECG与CVD检测的多种方式相结合。此方法是第一次在生物医学波形重构上进行了变压器序列到序列转换,并结合了PPG和ECG的优势。我们还创建了基于斑块的注意(SPA),这是一种效率方法,用于编码/解码生物医学波形。通过获取各种序列长度并捕获交叉点连接,SPA最大程度地提高了本地特征和全局上下文反复的信号操作。所提出的体系结构在BIDMC数据库上生成了0.29 RMSE的状态性能,以重新构建PPG到ECG,超过了先前的研究。我们还在模拟III数据集上评估了该模型,在CVD检测中达到了95.9%的精度,并在PPG-BP数据集中评估了该模型,在相关的CVD糖尿病检测中达到了75.9%的精度,表明其一般能力。作为一种概念证明,一种名为Pearl(原型)的耳环可穿戴式可穿戴,旨在扩大护理点(POC)医疗保健系统。
网络钓鱼攻击涉及通过伪装成一个值得信赖的实体来获取敏感信息的欺诈尝试,已经变得越来越复杂和普遍。传统的网络钓鱼检测方法通常依赖于启发式或基于签名的技术,这可能很难与不断发展的网络钓鱼策略保持同步。本文探讨了人工智能(AI)在增强网络钓鱼检测系统中的应用。AI驱动的方法利用机器学习算法,自然语言处理和模式识别,以更高的准确性和效率来识别和减轻网络钓鱼威胁。通过分析大量数据,这些系统可以检测出可能避免常规方法的网络钓鱼尝试的微妙模式和异常。该摘要讨论了网络钓鱼检测中采用的各种AI方法,包括受监督和无监督的学习技术,集合方法和深度学习模型。此外,它研究了AI-wive系统在现实世界中的有效性及其适应新兴的网络钓鱼策略的潜力。本文以目前的挑战和该领域的研究的未来方向进行了概述,强调需要持续发展以解决网络钓鱼威胁的动态性质。
勒索软件攻击已成为一种主要的网络安全威胁,其越来越复杂的技术经常逃避传统的检测方法。提出了一个新颖的框架,该框架通过蒙特卡洛树搜索(MCT)的动态决策能力来协同深度学习模型的预测优势,从而为不断发展的勒索软件变体带来的挑战提供了全面的解决方案。通过严格的评估,混合动力框架在降低误报的同时表现出显着提高的检测准确性,表现优于常规机器学习模型。MCT的整合允许探索多个决策路径,从而实时增强了系统对新型威胁的适应性。此外,提出的模型还保持了计算效率,使其对于企业环境中的实时部署而言是可行的。结果证明了混合模型是现代网络安全中强大的防御机制的潜力,提供了一种可扩展有效的工具来减轻勒索软件威胁。
●在Milano-Bicocca和Ciemat中测试的HD-XA PDE●相同的sipms(在CIEMAT和MIB之间交换),但不同的WLS栏●这些四个配置在Protodune-HD NP04中同样表示,并且在数字和位置W.R.T.中平衡。横梁,进行公平比较●跨言论校正
总体调查响应率。2020年12月的回应率(5,677个回复)高于1月(1,407)。这偏向我们的数据,因此,每个月都有一致的响应率,以报告准确的趋势。年龄范围18-34岁的参与者。目前,这两个年龄段占年龄段的回答的5%。只有高中教育的参与者。一些大学,大学和研究生级教育的参与者占我们回答的85%以上。非白与西班牙裔人群。识别为白人和非西班牙裔的参与者占我们回应的80%以上。农村县。Washoe和Clark County占我们受访者的68%,增加了其他县的回应。接种疫苗。作为疫苗分布,重要的是要调查接种疫苗的人群,以确定哪些因素影响了其疫苗的摄取并与疫苗前趋势相比。
摘要:在计算机视觉的领域,使用OpenCV的年龄和性别检测是一种关键应用,展示了复杂算法和真实世界应用的融合。该项目努力开发一个能够准确估算图像或视频流的年龄和性别的强大系统。利用OpenCV的力量,一个流行的开放式计算机视觉库,再加上机器学习技术,该系统旨在自动将个人分类为预定义的年龄组和性别类别。通过面部特征分析,深度学习模型和图像处理技术的结合,系统可以以惊人的精度辨别年龄和性别属性。通过将该技术集成到各种领域,例如监视,营销和用户体验自定义,该项目努力为各种社会和商业挑战提供实用的解决方案。年龄和性别的抽象性质使这项努力多基础,需要一种细微的方法,包括数据预处理,模型培训和绩效优化。最终,该项目有助于进步计算机视觉应用程序,从而促进了许多领域的创新和效率。关键字:CNN,深度学习,性别分类,年龄检测。I.在当今相互联系的世界中引言,在那里,数字互动和社交媒体渗透到日常生活中,了解人口统计学(例如性别和年龄)变得越来越重要。II。II。智能设备的扩散促进了大量数据的收集,其中大部分包含对人类行为和互动的宝贵见解。在利用这些数据,性别和年龄预测算法的无数应用程序中,它们在增强用户体验,个性化内容并告知决策的潜力中脱颖而出 - 在各个领域制定过程。由于其丰富的信息内容,面部照片已成为性别检测和年龄预测算法的主要来源。利用图像处理,特征提取和分类技术方面的进步,研究人员和开发人员设计了复杂的方法来分析面部特征并准确推断人口统计学属性。这些方法通常涉及阶段,例如增强图像,以提高质量和分割以隔离相关特征,从而为后续分析奠定了基础。通过训练大型数据集的神经网络,我们旨在开发能够准确地将性别预测为“男性”或“女性”的强大模型,并可能基于实验参数对年龄组进行分类。除了技术复杂性之外,人类面部图像对各个行业和社会领域都具有深远的影响。从安全和娱乐到招聘和身份验证,从面部图像中检测性别和年龄的能力可以简化流程,增强安全措施并为战略决策提供了信息。相关作品本文使用应用于面部图像的深度学习技术介绍了有关性别识别的研究。此外,面部表情,人类交流的重要方面,提供了对情感状态和反应的见解,使面部图像分析成为心理学家和研究人员的宝贵工具。通过阐明这些技术的方法,挑战和潜在应用,我们旨在为计算机视觉中的知识不断增长,并促进具有真实世界影响的实用解决方案的发展。作者探索了卷积神经网络(CNN)的使用进行特征提取和分类,从而实现了有希望的
1 机器学习与计算生物学,瑞士巴塞尔苏黎世联邦理工学院生物系统科学与工程系,2 瑞士洛桑生物信息学研究所 (SIB),3 瑞士巴塞尔大学生物医学系应用微生物学研究,4 瑞士巴塞尔大学环境科学系人文地理学,5 瑞士巴塞尔大学医院与巴塞尔大学临床细菌学与真菌学,6 瑞士巴塞尔大学医院与巴塞尔大学临床病毒学,7 瑞士巴塞尔大学医院急诊科,8 瑞士巴塞尔大学医院与巴塞尔大学传染病与医院流行病学,9 瑞士巴塞尔大学儿童医院与巴塞尔大学儿科传染病与疫苗学,10 瑞士巴塞尔大学医院实验室医学,11瑞士巴塞尔大学医院重症监护医学科,12 瑞士巴塞尔市卫生服务中心,13 瑞士阿尔施维尔 Viollier AG,14 瑞士巴塞尔瑞士红十字会地区输血服务中心和 15 瑞士巴塞尔大学生物医学系移植与临床病毒学
水是所有人类活动的必要组成部分。根据联合国世界水评估计划,每天,200万吨污水,制造和农业废物被排放到世界水中。由于人口需求和减少清洁水供应以及可用的水污染管理机制;迫切需要使用计算方法智能管理可用的水。本文提出了人工神经网络,特别是卷积神经网络(CNN),用于自动化水杂质检测。为了完善模型,使用管道中的浑浊水的图片来检测事件。深度学习的算法通过4220张图像的数据集进行了大量培训后达到96.3%的准确性,反映了各种污染的污染。这表明该模型可用于水系统污染检测。
