摘要:脑肿瘤是一个重大的医疗问题,它们的及时检测和治疗对于患者的福祉至关重要。本文使用磁共振成像(MRI)扫描和卷积神经网络(CNN)提出了一种创新的脑肿瘤检测和治疗方法。所提出的系统采用Python进行MRI图像分析和基于CNN的肿瘤分类。一旦确定了肿瘤,基于Arduino的治疗系统将用于管理针对特定肿瘤类别的激光和红外疗法。该集成系统为脑肿瘤诊断和治疗提供了简化有效的解决方案,可能会改善患者的预后。关键字:卷积神经网络(CNN);脑肿瘤; Arduino uno;激光治疗;红外疗法; Python; I.引言脑肿瘤仍然是医学诊断和治疗领域的巨大挑战。及时,准确的检测以及有效的治疗是确保患者最佳结果的关键因素。在这种情况下,诸如磁共振成像(MRI)和人工智能之类的先进技术表现出了巨大的希望。本文介绍了一种创新的系统,该系统利用MRI扫描的力量,卷积神经网络(CNNS)以及基于Arduino的基于Arduino的控制权来应对这一挑战。这项研究的主要目标是开发一个用于脑肿瘤检测和治疗的综合系统。该系统由两个主要组成部分组成:基于MRI的诊断和基于Arduino的治疗。MRI扫描在对脑肿瘤的初始检测和分类中起关键作用。使用Python和CNN算法,我们分析MRI图像以准确地识别并将脑肿瘤分为不同类别。一旦肿瘤分类,系统就会向Arduino微控制器发送序列数据信号,该信号负责启动适当的治疗。治疗方案包括激光和红外疗法,可以针对特定的肿瘤类别量身定制。这种方法提供了一种以患者为中心的脑肿瘤治疗方法,最大程度地减少了不必要的程序和副作用的风险。在该系统中,人工智能,医学成像和基于Arduino的控制的整合代表了脑肿瘤诊断和治疗领域的显着进步。通过自动化决策过程和治疗管理,我们旨在提高医疗保健提供效率并改善患者的结果。这项研究旨在为打击脑肿瘤的持续努力做出贡献,提供有前途的解决方案,将尖端技术和医疗专业知识结合在一起。
在云应用程序的领域中,线程僵局构成了重大挑战,影响了系统性能和可靠性。用于检测和解决僵局的传统方法通常在动态和可扩展的云环境中落下。本文为AI增强的预测系统提供了一个高级框架,该系统旨在早期发现和预防线程僵局。通过利用机器学习算法和实时数据分析,提出的系统可以预测潜在的死锁情景,然后才能升级为关键问题。该框架与基于云的应用程序集成在一起,以监视线程交互,确定指示即将发生僵局的模式并推荐先发制人的动作。通过广泛的模拟和现实世界的案例研究,我们证明了方法在减少僵局的发生率和改善整体应用稳定性方面的有效性。这项研究通过为并发计算的最具挑战性的方面之一提供积极的解决方案,从而有助于开发更具弹性的云系统。
我们对一项名为动力电池检测(PBD)的新任务进行了全面的研究,该任务旨在从 X 射线图像中定位密集的阴极和阳极板端点,以评估动力电池的质量。现有制造商通常依靠人眼观察来完成 PBD,这使得很难平衡检测的准确性和效率。为了解决这个问题并让更多人关注这个有意义的任务,我们首先精心收集了一个称为 X 射线 PBD 的数据集,该数据集包含从 5 家制造商的数千个动力电池中选择的 1,500 张不同的 X 射线图像,具有 7 种不同的视觉干扰。然后,我们提出了一种基于分割的新型 PBD 解决方案,称为多维协作网络(MDCNet)。借助线和计数预测器,可以在语义和细节方面改进点分割分支的表示。此外,我们设计了一种有效的距离自适应掩模生成策略,可以缓解由板分布密度不一致引起的视觉挑战,从而为 MDCNet 提供稳定的监督。无需任何花哨的修饰,我们基于分割的 MDCNet 始终优于其他各种角点检测、人群计数和基于一般/微小物体检测的解决方案,使其成为有助于促进 PBD 未来研究的强大基础。最后,我们分享了一些潜在的困难和未来研究的工作。源代码和数据集将在 X-ray PBD 上公开提供。
大脑中线移位(MLS)是一种定性和定量的放射学特征,它可以衡量脑中线结构的横向移位,以响应由血肿,肿瘤,脓肿或任何其他占据脑膜内病变引起的质量效应。可以使用其他参数来确定神经外科干预的紧迫性,并预测占据病变的患者的临床结果。然而,由于跨病例的临床相关大脑结构的差异很大,因此精确检测和量化MLS可能具有挑战性。在这项研究中,我们通过使用分类和分割网络架构来研究了由病例级MLS检测以及脑部标记位置的初始定位以及对脑部标记位置的最初定位和完善的级联网络管道。我们使用3D U-NET进行初始定位,然后使用2D U-NET来估计更精确的分辨率的确切地标点。在改进步骤中,我们从多个切片中融合了预测,以计算每个地标的最终位置。,我们用大脑的解剖标记产生的高斯热图目标训练了这两个UNET。案例级别的地面真相标签和地标注释是由多个训练有素的注释者产生的,并由放射学技术人员和放射科医生进行了审查。我们提出的管道实现了使用2,545个头部非对比度计算的测试数据集在AUC中的情况级MLS检测性能
摘要:神经递质 (NT) 是人类大脑正常运作所必需的化学信使,在人体生理系统中具有特定的浓度。其浓度的任何波动都可能导致多种神经元疾病和障碍。因此,对快速有效的诊断以调节和管理人类大脑疾病或状况的需求正在迅速增加。NT 可以从天然产物中提取。研究人员已经开发出新的协议来提高传感器的传感能力和环保性。深共晶溶剂 (DES) 已成为可持续化学中广受欢迎的“绿色溶剂”。DES 提供了更大的电位窗口范围,有助于增强传感器的电催化性能,并且具有更高的惰性,有助于电极的腐蚀保护,最终为系统提供更好的灵敏度和耐用性。此外,DES 可在工作电极上轻松电沉积不同的材料,这是电催化传感器的主要先决条件。本文首次详细描述了 DES 作为绿色溶剂在检测和提取 NT 中的应用。我们涵盖了截至 2022 年 12 月有关 NT 提取和监测的在线文章。最后,我们总结了该主题并展望了该领域的未来。
如果学生提交的内容包含 AI 生成的内容,评分员将在右上角的整体相似度得分下方看到一条警报。点击“查看警报”将显示警报类型,点击“预览”将以红色下划线显示疑似为 AI 内容的文本部分
摘要 建筑外围护结构中的空气泄漏是建筑物供暖和制冷需求的很大一部分原因。因此,快速可靠地检测泄漏对于提高能源效率至关重要。本文介绍了一种从外部确定建筑外围护结构中空气泄漏的新方法,将锁定热成像和鼓风机门系统的热激发相结合。鼓风机在建筑物内产生周期性的过压,导致外表面(立面)泄漏附近的表面温度发生周期性变化。通过以已知频率激发的温度变化,以激发频率对热图像的时间序列进行傅里叶变换,可得到突出显示泄漏影响区域的幅度和相位图像。红外摄像机的周期性激发和检测称为锁定热成像,广泛用于表征半导体器件和无损检测。激发通常通过光、电或机械能量输入实现。在本研究中,在 75 Pa 压差下,以三个 40 秒的激励周期对外墙进行了测量,总测量时间仅为 2 分钟。在光照、风和云量变化很大的条件下,空气温差为 5 至 7 K 时进行了测量。与最先进的差分红外热成像测量相比,测量结果显示检测质量更高,受环境条件变化的影响更小。该方法仅在激励频率下突出显示振幅图像的变化,从而过滤掉由环境影响引起的变化。因此,低至几开尔文的温差就足够了,可以从外部检查大型外墙。该振幅图像已经比用差分热成像创建的图像更清晰。使用标量积对振幅进行相位加权,可以进一步减少图像中不需要的伪影。关键词 锁定、热成像、鼓风机门、气密性、泄漏检测、建筑围护结构、建筑节能 1 引言 不受控制的气流通过建筑围护结构,造成 30-50% 的建筑物供暖能耗 (Kalamees,2007 年;Jokisalo 等人,2009 年;Jones 等人,2015 年)。因此,气密性评估,特别是快速可靠地定位泄漏,对于减少供暖能源需求至关重要。风扇加压法或鼓风机门测试在多项国际标准 (Deutsches Institut für Normung e. V.,2018 年;ASTM,2019 年) 中有规定,用于测量建筑物的整体气密性。然而,泄漏定位很麻烦,需要
随着人脸识别系统 (FRS) 的部署,人们开始担心这些系统容易受到各种攻击,包括变形攻击。变形人脸攻击涉及两张不同的人脸图像,以便通过变形过程获得一个与两个贡献数据主体足够相似的最终攻击图像。可以通过视觉(由人类专家)和商业 FRS 成功验证所获得的变形图像与两个主体的相似性。除非此类攻击能够被检测到并减轻,否则人脸变形攻击会对电子护照签发流程和边境管制等应用构成严重的安全风险。在这项工作中,我们提出了一种新方法,使用新设计的去噪框架来可靠地检测变形人脸攻击。为此,我们设计并引入了一种新的深度多尺度上下文聚合网络 (MS-CAN) 来获取去噪图像,然后将其用于确定图像是否变形。在三个不同的变形人脸图像数据集上进行了广泛的实验。还使用 ISO-IEC 30107-3 评估指标对所提出方法的变形攻击检测 (MAD) 性能进行了基准测试,并与 14 种不同的最新技术进行了比较。根据获得的定量结果,所提出的方法在所有三个数据集以及跨数据集实验中都表现出最佳性能。
心电图(ECG)是一种捕获心脏活动的电测量,是诊断心血管疾病(CVD)的金标准。但是,由于ECG需要使用用户参与,因此不可避免地进行心脏监测。相比之下,光电学(PPG)提供了易于收集的数据,但其精度有限限制了其临床用法。为了确定这两个信号的优势,最近的研究不适合将PPG信号重新构成到ECG的各种深度学习技术;但是,缺乏文本信息以及降低噪声生物医学信号的能力最终会限制模型的影响。在这项研究中,我们提出了一种基于变压器的新型体系结构,可从PPG重建ECG,并将PPG和重建的ECG与CVD检测的多种方式相结合。此方法是第一次在生物医学波形重构上进行了变压器序列到序列转换,并结合了PPG和ECG的优势。我们还创建了基于斑块的注意(SPA),这是一种效率方法,用于编码/解码生物医学波形。通过获取各种序列长度并捕获交叉点连接,SPA最大程度地提高了本地特征和全局上下文反复的信号操作。所提出的体系结构在BIDMC数据库上生成了0.29 RMSE的状态性能,以重新构建PPG到ECG,超过了先前的研究。我们还在模拟III数据集上评估了该模型,在CVD检测中达到了95.9%的精度,并在PPG-BP数据集中评估了该模型,在相关的CVD糖尿病检测中达到了75.9%的精度,表明其一般能力。作为一种概念证明,一种名为Pearl(原型)的耳环可穿戴式可穿戴,旨在扩大护理点(POC)医疗保健系统。
越来越多的公共数据集显示出对自动器官细分和图检测的显着影响。但是,由于每个数据集的大小和部分标记的问题,以及对各种肿瘤的有限侵入,因此所得的模型通常仅限于细分特定的器官/肿瘤,以及ig- ignore ignore ignore的解剖结构的语义,也可以将其扩展到新颖的Domains。为了解决这些问题,我们提出了剪辑驱动的通用模型,该模型结合了从对比的语言图像预训练(剪辑)到细分模型中学到的文本嵌入。这个基于夹子的标签编码捕获了解剖学关系,使模型能够学习结构化特征嵌入和段25个器官和6种类型的肿瘤。提出的模型是从14个数据集的组装中开发的,使用总共3,410张CT扫描进行培训,然后对3个附加数据集进行了6,162个外部CT扫描进行评估。我们首先在医疗细分十项全能(MSD)公共排行榜上排名第一,并在颅库(BTCV)之外实现最先进的结果。此外,与数据集特异性模型相比,大学模型在计算上更有效(更快6英制),从不同站点进行CT扫描更好,并且在新任务上表现出更强的传输学习绩效。
