网络钓鱼攻击涉及通过伪装成一个值得信赖的实体来获取敏感信息的欺诈尝试,已经变得越来越复杂和普遍。传统的网络钓鱼检测方法通常依赖于启发式或基于签名的技术,这可能很难与不断发展的网络钓鱼策略保持同步。本文探讨了人工智能(AI)在增强网络钓鱼检测系统中的应用。AI驱动的方法利用机器学习算法,自然语言处理和模式识别,以更高的准确性和效率来识别和减轻网络钓鱼威胁。通过分析大量数据,这些系统可以检测出可能避免常规方法的网络钓鱼尝试的微妙模式和异常。该摘要讨论了网络钓鱼检测中采用的各种AI方法,包括受监督和无监督的学习技术,集合方法和深度学习模型。此外,它研究了AI-wive系统在现实世界中的有效性及其适应新兴的网络钓鱼策略的潜力。本文以目前的挑战和该领域的研究的未来方向进行了概述,强调需要持续发展以解决网络钓鱼威胁的动态性质。
大脑中线移位(MLS)是一种定性和定量的放射学特征,它可以衡量脑中线结构的横向移位,以响应由血肿,肿瘤,脓肿或任何其他占据脑膜内病变引起的质量效应。可以使用其他参数来确定神经外科干预的紧迫性,并预测占据病变的患者的临床结果。然而,由于跨病例的临床相关大脑结构的差异很大,因此精确检测和量化MLS可能具有挑战性。在这项研究中,我们通过使用分类和分割网络架构来研究了由病例级MLS检测以及脑部标记位置的初始定位以及对脑部标记位置的最初定位和完善的级联网络管道。我们使用3D U-NET进行初始定位,然后使用2D U-NET来估计更精确的分辨率的确切地标点。在改进步骤中,我们从多个切片中融合了预测,以计算每个地标的最终位置。,我们用大脑的解剖标记产生的高斯热图目标训练了这两个UNET。案例级别的地面真相标签和地标注释是由多个训练有素的注释者产生的,并由放射学技术人员和放射科医生进行了审查。我们提出的管道实现了使用2,545个头部非对比度计算的测试数据集在AUC中的情况级MLS检测性能
心电图(ECG)是一种捕获心脏活动的电测量,是诊断心血管疾病(CVD)的金标准。但是,由于ECG需要使用用户参与,因此不可避免地进行心脏监测。相比之下,光电学(PPG)提供了易于收集的数据,但其精度有限限制了其临床用法。为了确定这两个信号的优势,最近的研究不适合将PPG信号重新构成到ECG的各种深度学习技术;但是,缺乏文本信息以及降低噪声生物医学信号的能力最终会限制模型的影响。在这项研究中,我们提出了一种基于变压器的新型体系结构,可从PPG重建ECG,并将PPG和重建的ECG与CVD检测的多种方式相结合。此方法是第一次在生物医学波形重构上进行了变压器序列到序列转换,并结合了PPG和ECG的优势。我们还创建了基于斑块的注意(SPA),这是一种效率方法,用于编码/解码生物医学波形。通过获取各种序列长度并捕获交叉点连接,SPA最大程度地提高了本地特征和全局上下文反复的信号操作。所提出的体系结构在BIDMC数据库上生成了0.29 RMSE的状态性能,以重新构建PPG到ECG,超过了先前的研究。我们还在模拟III数据集上评估了该模型,在CVD检测中达到了95.9%的精度,并在PPG-BP数据集中评估了该模型,在相关的CVD糖尿病检测中达到了75.9%的精度,表明其一般能力。作为一种概念证明,一种名为Pearl(原型)的耳环可穿戴式可穿戴,旨在扩大护理点(POC)医疗保健系统。
我们介绍多视图的细心上下文化(MVACON),这是一种简单而有效的方法,用于改善基于查询的多视图3D(MV3D)对象检测中的2D- TO-3D功能。尽管在基于查询的MV3D对象检测的领域取得了显着的进展,但先前的艺术通常会因高分辨率的高分辨率2D特征而缺乏基于密集的注意力提升的高分辨率2D特征,或者由于高计算成本,或者由于3D Queries的高度密集地接地不足,无法以3D Queries的高度质量为基于稀疏注意的多级2D功能。我们提出的MVACON使用代表密集但计算稀疏的细心特征连续化方案击中了两只鸟,该方案对特定的2d到3d feleture提升方法不可知。在实验中,使用BEVFormer及其最近的3D变形注意(DFA3D)变体以及PETR对纳斯曲霉基准进行了彻底的测试,并显示出一致的检测性能提高,尤其是在位置,方向和VELOCITY PRECTICTAR中提高了一致的检测性能。还可以在Waymo-Mini基准测试器上进行测试,并具有类似的改进。我们在定性和定量上表明,基于全局群集的上下文有效地编码了MV3D检测的密集场景级上下文。我们提出的MVA-CON的有希望的结果加强了计算机视觉中的格言 - “(contectu-alsized)特征事项”。
文本到图像生成模型正变得越来越流行,公众可以访问。由于这些模型看到大规模的部署,因此有必要深入研究其安全性和公平性,以免消散和永久存在任何形式的偏见。然而,存在的工作重点是检测封闭的偏见集,定义了先验的偏见,将研究限制为众所周知的概念。在本文中,我们解决了出现OpenBias的文本到图像生成模型中开放式偏见检测的挑战,该模型是一条新管道,该管道可识别和量化双质量的严重性,而无需访问任何预编译的集合。OpenBias有三个阶段。在第一阶段,我们利用大型语言模型(LLM)提出偏见,给定一组字幕。其次,目标生成模型使用相同的字幕绘制图像。最后,一个视觉问题回答模型认识到了先前提出的偏见的存在和范围。我们研究了稳定扩散1.5、2和XL强调新偏见的稳定扩散,从未研究过。通过定量实验,我们证明了OpenBias与当前的封闭式偏见检测方法和人类判断一致。
在启用 CopyLeaks 集成的 SpeedGrader 中对学生提交内容进行评分时,评分者可以直接在 SpeedGrader 中查看学生的相似度分数。分数以彩色百分比形式显示在学生提交文件旁边。
摘要 - 癫痫是一种常见的神经系统疾病,其特征是在全球范围内影响多达7,000万人的癫痫发作。在生命的头十年中,每150名儿童中大约有一个被诊断出患有癫痫病。脑电图是诊断癫痫发作和其他脑部疾病的重要工具。但是,脑电图的专家视觉分析很耗时。除了减少专家注释时间外,自动癫痫发作检测方法是帮助专家分析脑电图的强大工具。对小儿脑电图中癫痫发作的自动检测的研究已被提出。深度学习算法通常用于小儿癫痫发作检测方法;但是,它们在计算上很昂贵,并且需要很长时间才能开发。可以使用转移学习来解决此问题。在这项研究中,我们在小儿EEG的多个通道上开发了一种基于转移学习的癫痫发作检测方法。公开可用的CHB-MIT EEG数据集用于构建我们的方法。数据集分为训练(n = 14),验证(n = 4)和测试(n = 6)。从10 s EEG信号产生的具有5 s重叠的频谱图用作三个预训练的传输学习模型(RESNET50,VGG16和InceptionV3)的输入。我们小心翼翼地将孩子分成培训或测试集中,以确保测试集是独立的。基于脑电图测试集,该方法具有85.41%的精度,85.94%的召回率和85.49%的精度。此方法有可能协助研究人员和临床医生对小儿脑电图中癫痫发作的自动分析。
因此,量子干扰素通过来自密度操作机的非对角线元素的存在。在最佳检测器的情况下,从测量过程中逐渐加成了异构元素。如果可以交换密度运算符和最佳检测运算符的符号,那么我们可以解释出最佳检测操作员的物理含义是量子干扰。
摘要:人工智能(AI)严重影响了各个部门,突破了技术和重新定义过程的界限。本文研究了AI进步的三个关键领域:用于软件开发的GitHub Copilot,长期记忆(LSTM)网络检测假新闻以及AI对运输的更大影响。Github副副词是AI-Power Edsing Assistant,正在彻底改变开发人员编写代码的方式。LSTM,一种复发性神经网络(RNN)的形式,提供了一种有效的解决方案来检测错误信息。最后,AI通过自动驾驶车辆和交通管理对运输的贡献,展示了AI如何重塑运输领域的基础设施,安全性和效率。本文旨在全面了解这些技术的工作方式及其社会影响。
摘要 - 该研究旨在实施能够自主检测绵羊目标并在2D占用图上代表它们的系统,其最终目标是促进在UXV平台上自主牧羊。本文详细介绍了Blackboard System的开发,Blackboard System是一种用于自动目标检测和映射的软件解决方案。使用Python和C编程语言,Blackboard系统将单眼深度感测与自主目标检测,以产生全面的深度和目标图。这些地图是合并的,以产生从高架相机的角度捕获的操作区域的详细的2D鸟视图。黑板系统的独特功能是其模块化框架,它允许无缝更新或更换其深度传感和目标检测模块。