Miguel Realpe,Boris X. Vintimilla和Ljubo Vlacic。(2015)。传感器故障检测和自动驾驶汽车的诊断。在第二届国际机电一体化,自动化和制造业会议上(ICMAM 2015),国际会议,新加坡,2015年(第1卷30,pp。1-6)。EDP科学。
癫痫的诊断和治疗在很大程度上取决于脑电信号样本中癫痫发作的鉴定。本文主要集中于鉴定癫痫发作和基于EEG信号的分类,该特征的三个重要统计特征优先考虑EEG信号的非平稳特征,即复杂性,能量波动和自回旋模型,以表示独特的癫痫发作模式。测量复杂性的样品熵(SE)的三个特征,一种平均Teager Energy(MTE)之一,它测量了与癫痫发作相关的暂时性能量波动,而四种自回归(AR)建模技术提出了一种新颖的癫痫发作方法。基于线性相关性,AR模型用于表示独特的癫痫发作模式。为了训练AR模型,将信号分为图像前(塞氏症前)和间歇性(非西部)段。在检测阶段,通过滑动窗口计算了EEG信号的MTE和SE特征样本,并利用AR模型预测以下样品。本文表明,MTE,SE和AR模型共同产生了有希望的癫痫发作结果。这种方法在识别癫痫发作和非塞亚零件方面的敏感性和特异性优于现有方法。所提出的方法有可能用于实时癫痫发作检测应用,从而促进癫痫患者的及时诊断和治疗。
现代铁路系统需要一个可靠的框架,以优先考虑安全,效率和可持续性。这种集成的方法结合了先进的火车保护机制,智能平台技术以及通过涡轮机的可再生能源产生,以创建更安全,更环保的铁路运输环境,该系统通过控制火车速度和运动来防止事故,并在必要时自动应用制动器。安装在火车和轨道上的传感器提供有关火车性能,轨道状况和使用机器学习算法的潜在危害的连续数据,该系统可以分析数据以预测潜在的事故,从而使积极的措施可以建立一个可靠的通信网络,以连接火车,控制中心,并确保对新兴的紧急响应。小型涡轮机可以安装在火车平台或相邻区域上,以利用高速行驶的火车产生的风能。这种可持续的能源可以为平台系统供电并提高整体效率。整合电池系统以存储生成的能源可以提供可靠的电源,尤其是在高峰使用时间
结果:VNI的读取器2额定总体图像质量高于VNC(4.90 vs. 4.00; p <.05),而阅读器1没有发现显着差异(4.96 vs. 5.00; p> .05)。在VNC和VNI中的读者之间观察到了实质性的一致性(Krippendorff的Alpha范围:0.628-0.748)。两位读者对VNI的频率不完全发生频率(读者1:29%vs. 15%; p <.05;读者2:24%vs. 20%; p> .05)。尿酸和较小的石头(<5 mm)比VNC和VNI中的Caox和较大的石头更有可能被减去。总体而言,与VNC相比,VNI的石材减法率更高(读者1:22%比16%;阅读器2:25%vs. 10%; p <.05)。辐射剂量和管电压均未显着影响石材减法(p> .05)。
摘要 - AS 5G蜂窝车辆对所有物品(C-V2X)技术领先于V2X通信,它为电信服务提供商提供了使用其现有5G网络的车辆网络(V2N)服务的态度。为了提高5G V2N服务的安全性,在本文中,我们提出了一种新颖的协作V2X不当行为检测系统。该系统将保护在5G边网络中部署在5G边网络中的V2X应用服务器(V2X ASS)免受任何恶意V2X位置操纵攻击。我们的建议包括两个增强的机器学习模型。第一个模型利用历史数据来进行公路合理性检查(ORPC),而第二个模型通过通过共享每辆车的攻击率在边缘检测节点之间在边缘检测节点之间进行协作而建立。使用广泛的5G核心网络仿真测试了我们所提出的模型,从而产生了出色的结果。第一个模型的准确性从73%提高到91%,而第二个模型则进一步提高了精度至令人印象深刻的95%。关键字-5G,V2X,C-ITS,安全性,行为不当检测,机器学习,MEC,边缘。
摘要 - 基于运动图像(MI)的脑部计算机界面(BCI)显示出有希望的运动恢复结果,术中意识检测或辅助技术控制。但是,由于脑电图(EEG)信号的高度可变性,它们主要是每次使用日期所需的冗长而乏味的校准时间,并且缺乏所有用户的可靠性,因此它们遭受了几个限制。可以使用转移学习算法在某种程度上解决此类问题。但是,到目前为止,此类算法的性能已经非常可变,何时可以安全地使用它们。因此,在本文中,我们研究了MI-BCI数据库(30个用户)上各种最先进的Riemannian转移学习算法的性能:1)受到监督和不受监督的转移学习; 2)对于目标域的各种可用培训脑电图数据; 3)会议内或会议间的转移; 4)对于Mi-BCI表演良好且较不愉快的用户。从此类实验中,我们得出了有关何时使用哪种算法的准则。重新介绍目标数据后,该目标集的几个样本被考虑在内。即使对于课内转移学习也是如此。同样,重新介入对于在会话之间难以产生稳定的运动图像的受试者特别有用。
摘要 - 在动态图上检测到的动态检测旨在与图表中观察到的标准模式及其时间信息相比,识别表现出异常行为的实体。由于其在财务,网络安全和社交网络等各个领域的应用,它引起了越来越多的关注。但是,现有方法面临两个重大挑战:(1)动态结构捕获挑战:如何有效地使用复杂的时间信息捕获图形结构,以及(2)负面采样挑战:如何为无人看管的学习构建高质量的负样本。为了应对这些挑战,我们提出了对动态图(Gady)的生成异常检测。gady是一个连续的动态图模型,可以捕获细粒的时间信息以应对动态结构捕获挑战,从而克服了现有离散方法的局限性。指定,我们建议使用优先级的时间聚集和状态特征来增强动态图编码器以进行异常检测。在第二个挑战中,我们引入了生成对抗网络的新颖使用来产生负面子图。此外,在发电机训练目标中引入了辅助损失功能,以确保同时生成的样品的多样性和质量。广泛的实验表明,我们提出的Gady在三个现实世界数据集上的表现明显优于现状方法。补充实验进一步验证了我们的模型设计的有效性和每个组件的必要性。
摘要 - 每年,数以百万计的患者在手术过程中恢复意识,并可能患有创伤后疾病。我们最近表明,可以使用脑电图(EEG)信号的中位神经刺激过程中的运动活动检测来提醒医务人员,患者正在醒来并试图在全身麻醉下移动[1],[2]。在这项工作中,我们测量了直接训练对过滤的EEG数据进行训练的多种深度学习模型(EEGNET,深卷积网络和浅卷积网络)的运动图像的准确性和假阳性。我们将它们与有效的非深度方法进行了比较,即基于常见空间模式的线性判别分析,即应用于协方差矩阵的Riemannian Mean Mean Algorithm的最小距离,基于逻辑回归的逻辑回归,这是基于逻辑回归的,这是对协方差矩阵(TSS+LR)的较相关的空间投影。与其他分类器相比,EEGNET显着提高了分类性能的显着提高(p-值<0.01);此外,它的表现优于最佳的非深度clas-sifier(TS+LR),其精度为7.2%。这种方法有望改善全身麻醉期间术中意识检测。
摘要:在这项工作中,开发了用于水中的GD 3+离子检测的电解石墨烯场效应晶体管。通过在聚酰亚胺的光载体上制造了晶体管的源和排水电极,而石墨烯通道则是通过用喷墨打印氧化石墨烯墨水墨水来获得的,随后将氧化石墨烯墨水还原以减少氧化石墨烯。GD 3+选择性配体DOTA由炔烃连接器功能化,以通过在金电极上的Chemistry将其移植而不会失去其对GD 3+的影响。全面描述了合成途径,配体,接头和功能化表面的特征是电化学分析和光谱。AS官能化电极用作石墨烯晶体管中的栅极,因此可以调节源量电流作为其电势的函数,该电源本身是由在门表面上捕获的GD 3+浓度调节的。即使在包含其他潜在干扰离子的样品中,获得的传感器也能够量化GD 3+,例如Ni 2+,Ca 2+,Na+和3+。量化范围从1 pm到10 mm,对于三价离子,灵敏度为20 mV dec -1。这为医院或工业废水中的GD 3+定量铺平了道路。
摘要 - 集合检测是各个领域的基本问题,例如机器人技术,计算物理和计算机图形。一般而言,碰撞检测被作为计算几何问题,而所谓的吉尔伯特,约翰逊和Keerthi(GJK)算法是当今最采用的解决方案。在1988年推出时,GJK仍然是计算两个3D凸几何形状之间距离或碰撞的最有效解决方案。多年来,它被证明是高效,可扩展的和通用的,在宽类凸形的形状上运行,范围从简单的原始词(球体,椭圆形,盒子,盒子,锥,锥,胶囊等)到涉及数千个顶点的复杂网格。在本文中,我们通过利用这两个问题是从根本上优化概率的事实来介绍了凸几何之间加速碰撞检测和距离计算的几项贡献。值得注意的是,我们确定GJK算法是凸优化中良好的Frank-Wolfe(FW)算法的特定子案例。通过调整将Polyak和Nesterov加速与Frank-Wolfe方法联系起来的最新作品,我们还提出了经典GJK算法的两个加速扩展。通过涉及日常生活对象的数百万碰撞对的广泛基准,我们表明,这两个加速的GJK扩展大大减轻了碰撞检测的总体计算负担,导致计算时间高达两倍。最后,我们希望这项工作将大大降低现代机器人模拟器的计算成本,从而允许在很大程度上依赖模拟(例如增强学习或轨迹优化)的现代机器人应用加速。