摘要 - 社交媒体中的人们传播了许多信息,以更新其状态并与他人分享关键新闻。但是,这些平台中的大多数并未迅速验证个人或其帖子,人们无法手动识别假新闻。因此,需要一个能够检测假新闻的自动化系统。这项研究提出了使用四种机器学习算法构建模型。实验中采用的数据集是两个数据集的综合,其中包含几乎相等数量的有关政治的真实和虚假新闻文章。预处理阶段首先要通过删除标点符号,令牌化,特殊字符,白色空间,冗余单词消除,数字和英文字母,然后启动并停止数据离散化。然后,我们分析了收集到的数据,其中80%的数据最初用于训练每个模型。之后,应用四种明显的分类算法。使用新闻文章中的虚假新闻,诸如逻辑回归,决策树,随机森林和梯度提升分类器之类的方法。使用其余20%的数据评估了受过训练的分类器的精度。结果表明,决策树模型的最佳精度为99.60%,梯度提升为99.55%。此外,随机森林显示99.10%,逻辑回归98.99%。此外,我们还探索了根据混乱矩阵的结果获得最高精度,回忆,F1得分的最佳模型。索引术语 - 社会媒体,虚假新闻检测,机器学习,分类器,逻辑回归,决策树,随机森林,梯度提升。
摘要 — 寻找合适的停车位是一个具有挑战性的问题,尤其是在大城市。随着汽车保有量的增加,停车位变得越来越稀缺。对这些停车位的需求不断增长,再加上有限的停车位,导致了供需失衡。缺乏足够的停车管理系统导致许多街道上到处都是非法停放的汽车。需要一个可扩展、可靠、高效的停车管理系统来解决这个问题。基于深度学习的计算机视觉技术已经成为解决此类问题的有希望的解决方案。这些技术对图像识别和处理领域产生了巨大的影响。它们还为车辆跟踪领域的进一步应用提供了巨大的潜力。因此,它们可以用来检测停车位。
因此,量子干扰素通过来自密度操作机的非对角线元素的存在。在最佳检测器的情况下,从测量过程中逐渐加成了异构元素。如果可以交换密度运算符和最佳检测运算符的符号,那么我们可以解释出最佳检测操作员的物理含义是量子干扰。
将进行测试以确定哪些传感器可以快速、准确且一致地检测高浓度的目标成分。现场和实验室测试将包括使用不同类型的预处理工艺批量测试多个废水样品,以及使用第三方实验室测试验证结果等元素。除了传感技术外,该团队还将寻求将该技术与当前基础设施相结合。为实现这一目标,该团队将与 NESDI 传感器接口和仪器监控 (SIIM) 图形用户界面 (GUI) 项目团队合作。SIIM GUI 技术提供了与常见工业控制系统 (ICS) 接口的框架,并将为该项目将开发的传感系统提供遥测、GUI 和数据网络。
单眼3D检测(M3D)的目的是从单视图像中进行精确的3D观察定位,该图像通常涉及3D检测框的劳动密集型注释。最近已经研究了弱监督的M3D通过利用许多存在的2D注释来遵循3D注释过程,但通常需要额外的培训数据,例如LiDAR Point Clouds或多视图图像,这些数据会大大降低其在各种应用中的适用性和可用性。我们提出了SKD-WM3D,这是一个弱监督的单眼3D检测框架,利用深度插入以实现M3D,并具有单一视图图像,而无需任何3D注释或其他培训数据。SKD-WM3D中的一个关键设计是一个自我知识的蒸馏框架,它通过融合深度信息并有效地减轻单核场景中固有的深度模棱两可,从而将图像特征转换为3D类似的表示形式,而无需计算上的计算层面。此外,我们设计了不确定性感知的分离损失和梯度定位的转移调制策略,分别促进了知识获取和知识转移。广泛的实验表明,SKD-WM3D明显超过了最新的实验,甚至与许多完全监督的方法相当。
开放式对象检测(OSOD)已成为当代研究方向,以解决对未知对象的检测。最近,很少有作品通过使用Con-Contrastive聚类来分开未知类,在OSOD任务中实现了可观的性能。相比之下,我们提出了一种新的基于语义聚类的方法,以促进语义空间中有意义的群集的对齐,并引入一个类去相关模块以实现群间间的分离。我们的方法进一步不适合对象焦点模块预测对象分数,从而增强了未知对象的检测。此外,我们采用了i)一种评估技术,该技术对低置信度输出进行了惩罚,以减轻对未知对象的错误分类的风险,ii)一种称为HMP的新指标,该指标使用hMP使用Har-nonic Mean结合了已知和未知的精度。我们的广泛实验表明,所提出的模型可以在OSOD任务上对MS-Coco&Pascal VOC数据集有显着改进。
拷贝数变体(CNV)在遗传性疾病和癌症的分子发病机理以及正常的人间变异中起着重要作用。但是,它们仍然很难在主流测序项目中识别,尤其是涉及外显子组测序,因为它们通常发生在非针对分析的DNA区域中。为了克服这个问题,我们开发了非高峰,这是一种用户友好的CNV检测工具,该工具以denoising方法为基础,并且使用“''target''DNA读取,通常通过测序管道来丢弃它。我们根据96种癌症的靶向测序以及来自三种不同人群的遗传性视网膜疾病的个体的130个个体进行了基准测试。对于两组数据,非高峰均表现出出色的性能(> 95%的灵敏度和> 80%的特定峰与实验验证),可在仅检测单独的硅数据中的CNV,这表明其对分子诊断和遗传研究的直接适用性。
越来越多的公共数据集显示出对自动器官细分和图检测的显着影响。但是,由于每个数据集的大小和部分标记的问题,以及对各种肿瘤的有限侵入,因此所得的模型通常仅限于细分特定的器官/肿瘤,以及ig- ignore ignore ignore的解剖结构的语义,也可以将其扩展到新颖的Domains。为了解决这些问题,我们提出了剪辑驱动的通用模型,该模型结合了从对比的语言图像预训练(剪辑)到细分模型中学到的文本嵌入。这个基于夹子的标签编码捕获了解剖学关系,使模型能够学习结构化特征嵌入和段25个器官和6种类型的肿瘤。提出的模型是从14个数据集的组装中开发的,使用总共3,410张CT扫描进行培训,然后对3个附加数据集进行了6,162个外部CT扫描进行评估。我们首先在医疗细分十项全能(MSD)公共排行榜上排名第一,并在颅库(BTCV)之外实现最先进的结果。此外,与数据集特异性模型相比,大学模型在计算上更有效(更快6英制),从不同站点进行CT扫描更好,并且在新任务上表现出更强的传输学习绩效。
现代生活的几乎所有方面都取决于太空技术。多亏了计算机视频的一般和深度学习技术的巨大进步,几十年来,全世界都见证了将深度学习的发展用于解决太空问题的问题,例如自动驾驶机器人,诸如示踪剂,类似昆虫的机器人,类似昆虫的机器人和SpaceCraft的健康监测。这些只是一些在深度学习的帮助下具有高级空间行业的重要例子。但是,深度学习模型的成功需要大量的培训数据才能具有不错的性能,而另一方面,用于培训深度学习模型的公开空间数据集非常有限。当前没有用于基于太空的对象检测或实例分割的公共数据集,部分原因是手动注释对象分割掩码非常耗时,因为它们需要像素级标签,更不用说从空间获取图像的挑战了。在本文中,我们的目标是通过释放数据集以进行航天器检测,实例分割和零件识别来填补这一差距。这项工作的主要贡献是使用太空设置和卫星的图像开发数据集,并具有丰富的注释,包括绑定的航天器和口罩的框架盒对物体部分的水平,这些盒子是通过自动程序和手动努力的混合而获得的。我们还提供了对象检测和Intance Sementation的最新方法作为数据集的基准。可以在https://github.com/yurushia1998/satellitedataset上找到下载建议数据集的链接。
1。Introduction................................................................................................. 1