摘要:皮秒雪崩探测器是一种基于 (NP) 漂移 (NP) 增益结构的多结硅像素探测器,旨在实现带电粒子跟踪,具有高空间分辨率和皮秒时间戳功能。它使用传感器体积深处的连续结来放大薄吸收层中电离辐射产生的一次电荷。然后,在较厚的漂移区内移动的二次电荷会引发信号。IHP 微电子公司使用 130 nm SiGe BiCMOS 工艺生产了一个概念验证单片原型,该原型由间距为 100 µ m 的六边形像素矩阵组成。探测站和 55 Fe X 射线源的测量表明,原型机可以正常工作,并且显示雪崩增益,最大电子增益可达 23。雪崩特性研究(经 TCAD 模拟证实)表明,55 Fe 源的 X 射线转换产生的较大初级电荷引起的空间电荷效应限制了有效增益。
目标:本研究的目的是比较计算机上的Tomog-raphy(CT)扫描中虚拟单烯图像(VMI)重建的有效性和临床实用性,并在光子计算检测器(PCD)CT系统上进行预滤线,以减少金属植入型Artifacts in Metal Artifacts in the Post of Posterative of Posterative of Posterative of the the the Postoperatiate of the the Postoperatiate oferporatiate ank。材料和方法:这项回顾性研究包括在3月至2023年10月之间在PCD CT扫描仪上进行内部固定的脚踝内固定的患者。在60到190 KeV之间的虚拟单晶图像在骨内核中以10 keV的增量重建,分别用于两种采集(分别为VMI SN和VMI STD)。噪声测量值评估了最突出的近金属图像扭曲中的伪影降低,并在采集模式以及多色图像和VMI之间进行了比较。三个读者评估了骨愈合的可见性以及5个重建水平的可见性和伪像范围。结果:本研究中包括48例患者(21名女性,27males;平均年龄为55.1±19.4岁)。tin-perfelter the-pyflerter the-div> tin-perfefterters的采集(n = 30)的多色彩图像和VMI的人工水平较低(n = 18;p≤0.043)。A significant reduction of metal artifacts was ob- served for VMI Sn ≥ 120 keV compared with polychromatic images (hyperdense ar- tifacts: 40.2 HU [interquartile range (IQR) 39.8] vs 14.0 HU [IQR 11.1]; P ≤ 0.01 and hypodense artifacts: 91.2 HU [IQR 82.4] vs 29.7 HU [IQR 39.6];For VMI Std , this applied to reconstructions ≥ 100 keV (hyperdense artifacts: 57.7 HU [IQR 33.4] vs 19.4 HU [IQR 27.6]; P ≤ 0.001 and hypodense artifacts: 106.9 HU [IQR 76.1] vs 57.4 HU [IQR 55.7]; P ≤ 0.021).对于可见性的可见性,与多色图像相比,keV的VMI SN在120 keV处得出更高的评分(p≤0.001),而与多颗粒图像相比,对图像的可解释性的评分更好(p = 0.023),并且对伪影范围的评分较低(p = 0.001)。结论:与多色图像相比,在120 KEV处的锡型VMI在120 KEV处显示出显着降低的金属伪像,而OSSESE愈合和图像可解释性的可见性得到了提高。因此,锡预滤光PCD CTWITH VMI重建可能是对金属植入物患者踝关节术后CT成像的有益补充。
量子密钥分发 (QKD) 是一种使用光的量子态作为可信信使的通信方法,这样,任何对信息传输的窃听企图都会被揭示为对状态进行测量过程的底层量子物理的一部分。1-3 虽然基本协议在其假设范围内是安全的,但实际的 QKD 系统可能会因原始协议方案的不完善实现、准备和检测设备不完善,或通过侧信道将信息泄露出两个通信伙伴所谓的安全范围而表现出漏洞。4-6 已经通过技术措施和高级协议识别和解决了这类漏洞。例如,光子数分裂攻击(其中单个光子被微弱的相干脉冲近似)、7,8 特洛伊木马攻击、3,9 各种定时攻击、10-12 以及各类信息泄漏到寄生自由度中。 QKD 系统最关键的漏洞可能是针对单光子探测器的探测器致盲/假态攻击。13 实验证明,这种攻击有效
摘要Dune FAR检测器旨在检测由中微子与大型液体氩靶的相互作用的带电产物产生的光子和电子。第一个沙丘远检测器(FD1)的光子检测系统(PDS)由6000个光子检测单元组成,称为X-arapuca。在LAR中释放粒子能量产生的及时光脉冲的检测将补充并增强沙丘壁球时间投影室。它将改善标记的非光束事件,并在低能启用超新星中微子的触发和量热法。X- Arapuca是几个组件的组件。其Photon检测效率(PDE)取决于组件的设计,单个组件的等级和耦合。X-arapuca PDE是PDS敏感性的主要参数之一,进而决定了沙丘对在银河系中检测核心偏曲超新星和核子衰减搜索的敏感性。在这项工作中,我们介绍了FD1 X-Arapuca基线设计的绝对PDE的最终评估,该设计在两个具有独立方法和设置的实验室中测量。在Palomares中报道了初步结果(Jinst 18(02):C02064,https://doi.org/10.1088/1748-0221/18/18/02/C02064,2023)。这些X-Arapuca设备的一百六十个单元已在CERN NETRINO平台的NP04设施中部署了1:20秤
金属探测器广泛用于探测战争遗留爆炸物,如地雷和未爆炸弹药。几乎所有专业探测器都基于涡流原理。目前误报数量高达总警报数量的 99.9%。因此,排雷界非常需要专业地雷探测器增加鉴别能力。我们展示了两种互补的方法:使用垂直信号轮廓和水平空间图。这是通过在搜索头上添加垂直距离传感器和惯性定位单元来实现的。图像处理方法可用于区分金属压载物和危险物体。在本文中,我们展示了用于涡流成像的完全自主 3-D 定位单元开发的第一步。关键词:金属探测、地雷探测器、鉴别、信号高度分布、涡流
大视场探测器,BM05(20 厘米)、BM18(40 厘米) 紧凑型白光束显微镜,BM05 XRI 热负荷,温度高达 300ºC,ID19 探测器系统,高收集效率,抗辐射,蓝色橡皮擦,1x、2x、4x 放大倍数,BM18 光学元件:薄镜和穿孔镜,铝涂层,BM18
VMH4 在简易爆炸装置 (IED) 检测方面表现出色。机械耐用性、直观操作和最大检测灵敏度的结合让用户无可挑剔。只需调整伸缩杆的长度即可开始使用。这款新一代探测器的另一个特殊功能是,可充电电池也可以直接在设备中充电,可以使用 110 – 240 V/50 – 60 Hz 交流适配器或 10 – 30 V 车载电源。
由ECFA(欧洲未来加速器委员会)组织,该路线图是由社区开发的,以平衡欧洲的探测器研发工作,并考虑到邻近领域的新兴技术的进步。路线图应识别并描述多元化的检测器研发投资组合,该投资组合具有最大的潜力,可以长期和长期增强粒子物理计划的性能。
加速器研发,并用足够的资源维持它。与国际合作伙伴以及其他社区(如光子和中子来源,融合能源和工业)的协同作用,应将路线图优先考虑该技术。本十年的可交付成果应及时定义,并在CERN,国家实验室和机构之间进行协调。•成功完成高光度LHC必须保留