摘要 癌症是导致疾病相关死亡的主要元凶之一,发病率高,死亡率也高。癌症发病隐匿、早期检测困难以及缺乏广谱有效的多癌种治疗靶点,几十年来限制了癌症患者生存期的延长。因此,一个涉及各种癌症相关信号通路和不同癌症的多功能治疗靶点可能对癌症靶向治疗更有效。USP4是DUBs成员之一,参与去泛素化(泛素化的逆过程),可以调节各种经典的癌症相关信号通路,从而在肿瘤发生和发展等病理生理过程中发挥重要作用。最近发现,USP4对细胞增殖、迁移和侵袭以及各种肿瘤的凋亡具有多种影响。此外,USP4还可以作为多种癌症的预后生物标志物。本文将对USP4的调控机制、相关信号通路、病理生理功能以及在各种癌症中的作用进行全面介绍,以期帮助我们更好地理解其生物学功能,并改进未来的研究,构建合适的USP4靶向癌症治疗体系。关键词:USP4,翻译后修饰,癌症,机制,治疗靶点
理由:心肌缺血/再灌注(I/R)损伤导致不可逆的心肌细胞死亡并加剧心肌梗塞。去泛素化酶(DUB)对于维持底物蛋白质稳定性和功能性,在心脏病理生理学中起着重要作用。在这项研究中,我们旨在阐明在心肌I/R损伤中,类似DUB,类Myb样,SWIRM和MPN结构域1蛋白(MYSM1)的调节作用,并探索背后的分子机制。方法和结果:首先,发现MySM1的表达与心肌I/R损伤呈正相关。MySM1的遗传敲低可显着赋予心脏中I/R伤害的保护。相应地,AAV9介导的MySM1的心肌细胞特异性敲低对心肌I/R损伤具有治疗作用。通过全面的蛋白质组定量分析,我们将转录1(STAT1)的信号传感器和激活因子确定为MySM1的直接底物。从机械上讲,MySM1通过其MPN金属蛋白酶结构域介导了K63连接的STAT1的K63连接去泛素化和稳定。此外,MySM1通过促进STAT1的转录因子函数来启动与坏死相关的基因的表达。结论:这项研究说明了调节心肌I/R损伤的MySM1-Stat1轴,并将MySM1确定为心肌I/R损伤的药理靶标。
背景:地幔细胞淋巴瘤(MCL)是一种属于非霍奇金淋巴瘤的异质疾病。近年来,MCL的发病率正在上升,预后仍然不利。泛素特异性蛋白酶14(USP14)已证明参与恶性肿瘤的过程。在本文中,讨论了USP14在MCL的恶性过程中的作用和依鲁替尼抗性的机制。方法:通过QRT-PCR和Western印迹,测试了MCL细胞中USP14的mRNA和蛋白质表达。USP14干扰质粒是通过细胞转染技术构建的,然后将CCK8和EDU分析用于评估细胞增殖。细胞周期和细胞凋亡。还研究了MCL细胞对依鲁替尼的敏感性。接下来,使用Western印迹,Co-IP,环己酰亚胺(CHX)测定和其他技术来检测USP14和XPO1之间的关系。最后,讨论了USP14对MCL的恶性过程的影响和过度表达XPO1的同时抑制USP14和过表达的XPO1,并讨论了MCL中Ibrutinib敏感性的调节机制。结果:USP14表达在MCL细胞系中明显强化。USP14的干扰抑制了MCL细胞活力,增强的细胞周期停滞,凋亡和Ibrutinib敏感性。通过增强XPO1稳定性,USP14去泛素化可以实现此过程。结论:USP14可以通过稳定XPO1来促进MCL的恶性进展和ibrutinib敏感性。
Machado-Joseph疾病(MJD)是一种毁灭性且无法治愈的神经退行性疾病,其特征是进行性共济失调,难以说话和吞咽。因此,受影响的个体最终成为轮椅依赖,需要持续的护理,并面临预期寿命缩短。MJD的单基因原因是ATXN3基因内的三链肽(CAG)重复区域的膨胀,这导致产生的ataxin-3蛋白内聚谷氨酰胺(PolyQ)膨胀。虽然可以很好地确定ataxin-3蛋白作为去泛素化(DUB)酶的作用,因此与蛋白质抗体有关,但仍然存在有关polyq膨胀在ataxin-3对其DUB功能的影响的问题。在这里,我们回顾了当前的Ataxin-3的DUB功能,其DUB目标以及PolyQ扩展对Ataxin-3的DUB功能的影响的知识。我们还考虑了ataxin-3的配音功能的潜在神经保护作用,以及亚Xaxin-3作为基因转录的配音酶和调节剂的相交。ataxin-3是MJD中的主要致病蛋白,似乎也参与了癌症。由于异常去泛素化与神经变性和癌症既有联系,因此对Ataxin-3的DUB功能的全面理解对于在这些复杂条件下阐明潜在的治疗靶标很重要。在这篇综述中,我们旨在将Ataxin-3的知识巩固为DUB和揭幕区域,以进行未来的研究,以帮助对Ataxin-3的DUB功能进行治疗,以治疗MJD和其他疾病。
摘要 背景 慢性束缚应激 (CRS) 是一种促癌因素。但其潜在机制尚不清楚。目的 我们旨在研究 CRS 是否通过改变口腔微生物群和相关代谢物来促进头颈部鳞状细胞癌 (HNSCC),以及犬尿氨酸 (Kyn) 是否通过调节 CD8 + T 细胞来促进 HNSCC。设计 4-硝基喹啉-1-氧化物 (4NQO) 处理的小鼠暴露于 CRS。用 4NQO 处理的无菌小鼠接受来自 CRS 或对照小鼠供体的口腔微生物群移植。对小鼠唾液、粪便和血浆样本进行 16S rRNA 基因测序和液相色谱-质谱分析,以研究其微生物群和代谢物的变化。使用 4NQO 诱导的 HNSCC 小鼠模型研究了 Kyn 对 HNSCC 的影响。结果 CRS 小鼠的 HNSCC 和口腔微生物失调发生率高于无 CRS 对照小鼠。在 CRS 暴露下,假单胞菌和韦荣球菌种增多,而某些口腔细菌(包括棒状杆菌和葡萄球菌种)减少。此外,在暴露于 4NQO 治疗的无菌小鼠中,CRS 改变的口腔微生物群促进了 HNSCC 的形成,导致口腔和肠道屏障功能障碍,并诱导宿主代谢组转变,导致血浆 Kyn 增加。在应激条件下,我们还发现 Kyn 激活了肿瘤反应性 CD8 + T 细胞中的芳烃受体 (AhR) 核易位和去泛素化,从而促进 HNSCC 肿瘤发生。结论 CRS 诱导的口腔微生物群失调在 HNSCC 中起促肿瘤发生作用,并可影响宿主代谢。从机制上讲,在压力条件下,Kyn 通过去泛素化稳定 AhR,从而促进 CD8 + T 细胞耗竭和 HNSCC 肿瘤发生。
恶性胸膜间皮瘤(MPM)鉴定出由胸膜层引起的原发性肿瘤病变,胸膜层是一种非常罕见的肿瘤,在美国的发生率约为3500例,在大多数国家 /地区仍在增加(1-4)。mpm通常会影响从第五至第七十年的患者,并且在70%至80%的病例中,男性发展(5)。尚未针对MPM开发有效的治疗方法,该治疗方法包括临床拟合患者的化学疗法和手术组合的标准疗法(6)。然而,MPM的个体预后较差,导致5年生存率约为10%,中位总生存期(OS)为8.3个月(7,8)。尽管被认为是石棉相关的疾病,但已确定了其他风险因素的发育,例如先前的霍奇金淋巴瘤中的地幔辐射疗法(9)。此外,在少数情况下,已经清楚地报道了遗传易感性,特别是与BRCA1相关蛋白1(BAP1)基因的生殖线致病变异有关,该基因是MPM中最常见的基因之一,以及NF2,NF2,TP53,TP53,CDKN2A,CDKN2A,SETDB1和SETDB1和SETD2(10,11)。尤其是,与其他形式的MPM相比,种系BAP1致病变异与产生原位间皮瘤并因此更好的生存率有关(1,6)有关。由于肿瘤样品杂合性,很难区分BAP1的躯体与种系变体。BAP1是位于3P21染色体上的肿瘤抑制基因,其产物参与蛋白质去泛素化,细胞周期控制和凋亡(12)。体细胞变体可能会导致OS较晚的检测较差:通常直到患者被诊断为MPM和肿瘤内其他致癌变体的同时出现后,它们通常才被识别。此外,尽管检测生殖线BAP1变体会引起遗传咨询,并最终涉及的家庭成员测试,这些家庭成员可能会带来相同的遗传改变和相关的致癌风险,但体细胞BAP1变体不需要遗传咨询,因为它不是由亲戚共享的。BAP1的功能丧失与肿瘤易感性有关
减轻疟疾和相关死亡的负担受到了疟疾寄生虫能够发展对市场上所有可用疗法的抵抗力的能力的阻碍(Antony和Parija,2016年)。因此,了解寄生虫获得对抗疟药的耐药性的机制对于未来替代有效治疗的发展至关重要。如今,阿耳震蛋白及其衍生物(Arts)是推荐的治疗方法,以及长期伴侣,形成基于青蒿素的联合疗法(ACTS)。artemisin抗性,主要由环阶段存活测定法(RSA)定义,经常与K13蛋白中的突变有关,而K13蛋白不调节蛋白酶体的活性(Wicht等,2020)。然而,使用蛋白酶体抑制剂(例如环氧素)会增加抗性和敏感寄生虫中的青蒿素活性(Bozdech等,2015)。在该帐户中,泛素 - 蛋白酶体途径(UPP)的不同部分的突变可能会影响阿甘辛蛋白的反应(Bridgford等,2018)。最近的研究表明,19S和20S的蛋白酶体亚基的突变敏化K13 C580Y寄生虫,这是基于RSA的更大湄公河区域中最普遍的青蒿素耐药性突变,基于RSA(Rosenthal和Ng,2021; Rossenthal和Ng,20223)。此外,在编码非素化酶UBP-1的基因中的两个突变在抗甲半氨着这甲蛋白蛋白的抗chabaudi P. chabaudi寄生虫中被鉴定出来,并且证明它们可以介导恶性疟原虫中的艺术耐药性(Cravo,2022222)。后者负责底物的识别,去泛素化,展开和易位。泛素 - 蛋白酶体系统对于真核细胞至关重要,因为它负责蛋白质的降解或回收利用,侵蚀了几个细胞过程,包括细胞周期,转录调节,细胞应激反应,信号转导,信号转导,和细胞曲折(Wang et al。,2015年)。这种蛋白质调节对于在两个宿主之间的生命周期进程中发生的疟疾寄生虫经历的快速转化至关重要,尤其是在复制率高的阶段(Krishnan和Williamson,2018年)。UPP涉及一种称为泛素化的蛋白质后修饰过程,该过程将多泛素链连接到随后由26S蛋白酶体识别的蛋白质上。如果蛋白质被蛋白质组恢复或降解,则泛素化定义的类型(Aminake等,2012; Wang等,2015)。26S蛋白酶体是一种枪管形的多亚基蛋白酶复合物,分为20S核心颗粒(CP)和19S调节粒子(RP)。20S核心通过肽基戊酰基肽水解(PGDH)(caspase样),类似胰蛋白酶样和类似chymotrypsin的活性负责蛋白水解,分别遇到了三种B-亚基(B1,B2和B5)(分别为Wang et al。,2015年)。这些催化活性的亚基分别使用N末端苏氨酸作为酸性,胰蛋白酶和疏水残基的羧基末端后的亲核试剂和裂解。这些活动站点