本文是两者中的第一个,它提出了16年的主题解决方案,该解决方案是沿美国西部14海岸的加利福尼亚电流系统(CCS)的耦合物理学和生物地球化学模型,并验证有关平均,季节性,年间和15个季节性的季节性季节性季节性和较低度的物理解决方案。其伴侣论文是Deutsch等。16(2021a)。目的是构建和演示一种建模工具,该工具将用于17种机械解释,归属因果评估以及对18个循环和生物地球化学的未来进化的预测,并特别关注增加的海洋层构型 - 19 tion,脱氧,脱氧和酸性。CCS循环的良好解决的中尺度(DX = 4 km)模拟20是在1995年至2010年的16年后的21个时期的区域海洋建模系统中进行的。海洋解决方案由高分辨率22(DX = 6 km)的区域配置强迫天气和研究预测(WRF)大气23模型。这两个高分辨率的区域海洋和大气模拟都被横向开放的边界条件迫使24,从较大的域,更粗的父母仿真 - 25本身具有来自Mercator和气候预测的边界条件26 System System Reanalyses。我们在模拟的大气27强迫海洋和卫星测量的空间模式的强迫和暂时变化的强迫之间表现出了良好的一致性。然后用卫星和原位测量对模拟的海洋物理29领域进行评估。模拟再现30个气候上升前和跨近岸的等值斜率,31个平均电流模式(包括加利福尼亚潜流)以及季节性,年际,32和亚季节变异性的主要结构。它还显示了中尺度涡流活性与33海洋和大气之间的风能交换之间的一致性。最后,使用高频风强迫35的影响评估了天气风变异性对现实代表海洋36中尺度活动和年龄型惯性电流的重要性。37
在1980年代解决此类问题,Manin [2]和Feynman [3]提出使用量子计算机ð量子机械系统,这些系统可以消除指数增加,因为它们以量子形式存储和处理信息。接下来,1992年,德意志和乔萨(Jozsa)确定量子计算机还可以加速解决某些数学问题的解决方案[4]。一个关键事件发生在1994年,当时Shor提出了多项式量子质量分解算法,这与最佳经典算法的指数依赖性相比是一个巨大的飞跃[5]。整数分解问题在现代世界中特别具有重要意义,因为它是互联网上最广泛的公共密码系统(在互联网上最广泛的公共加密系统)的基础(rsa)算法(ASYM-Unternet上最广泛的公共加密系统(Asym-Uncrypryption)[6] [6],这允许对两个以前的信息进行过大规模交换或在两个以前的信息交换之间,或者在7个以前都有机会。为此,第一个用户(服务器)选择了两个Primes Q和R,从中选择了公共密钥P QR,并通过未受保护的通信渠道将其发送给第二用户(客户端)。客户端使用公共密钥对其消息进行加密,并通过同一频道将其发送回服务器。进行解密,服务器使用了仅向他知道的秘密密钥,该密钥是由Q和R构建的。因此,攻击者解密消息的能力直接取决于他对公钥的考虑能力,这意味着有一天量子计算机将能够破解数据传输通道。由于量子计算机创建的巨大复杂性,到目前为止,只能仅考虑8位数字[8],而考虑到2048位公钥(截至2020年的标准)可能需要超过一百万吨数[9]。现有的通用量子计算机只有50至100量列表[10±12],并且在不久的将来将无法破解RSA算法;但是,今天传输的一些数据必须保密数十年[13]。
Abraham Jalbout (Auxilium)、Adam Burley (Nuton、力拓)、Aditya Ramji (加州大学戴维斯分校)、Adriana Zamora (Minviro)、Alan Morales (世界经济论坛)、Alexander Allen (Nth Cycle)、Alvaro Baeza (Glencore)、Anthony Weiss (TechMet)、Antonio Valente (Ecoinvent)、Arnaud Jouron (Arthur D. Little)、Batchimeg Ganbataar (Nomadic Venture Partners)、Brenda Haendler (突破能源研究员)、Brendan Smith (SiTration)、Buff Lopez (CleanTech Group)、Caleb Boyd (Molten Industries)、Chris Beatty (TechMet)、Cristobal Undurraga (Ceibo)、Darryl Steane (Ceibo)、Emily Ritchey (运输与环境)、Eric Dusseux (突破能源风险投资公司)、Eric McShane (Electroflow)、Francisco Jeria (Ceibo)、Gareth Taylor (S&P Global)、Gero Frisch(弗莱堡大学)、Henry Finnegan(TechMet)、Ian Hayton(CleanTech Group)、Jared Deutsch(GeologicAI)、Javiera Alcayaga(Nuton、力拓)、Jenni Kiventera(EIT Raw Materials)、Jonathan Dunn(英美资源集团)、Jordan Lindsay(Minviro)、Joseph Bertin(Tokia Cobex)、Julia Poliscanova(运输与环境)、Karan Bhuwalka(斯坦福大学)、Katarina Nilsson(ETP SMR)、Kevin Bush(Molten Industries)、Laura Sonter(生物多样性咨询公司)、Laure Latour(Tokai Cobex)、Libby Wayman(Breakthrough Energy Ventures)、Lucy England(FLSmidth)、Ludivine Wouters(Latitude Five)、Luis Arbulu(Sunna VC)、Madeleine Luck(QCF)、Marcus Clover(Energy Revolution Ventures)、Mat Ganser(Lilac Solutions)、Mouna Tatou(DGALN)、Nathan Flaman(I-ROX)、Nigel Steward(力拓)、Nour Amrani(FLSmidth)、Philip Newman(力拓 - HDS 技术)、Roland Gauss(EIT Raw Materials)、Romain Dechelette(Infravia)、Rosemary Cox-Galhorta(突破能源研究员)、Saad Dara(Mangrove Lithium)、Sam Jaffe(Addionics)、Scott Thomsett(Rovjok)、Stephen Northey(悉尼大学)、Sylvain Eckert(Infravia)、Tae-Yoon Kim(IEA)、Thomas Requet(DGALN)、Vincent Pedailles(Carbon Scape)。
姓名 迈克尔·肖伊 (Michael Schoy) 出生日期 1965 年 5 月 12 日 1984 年 加入德国联邦国防军 1984 - 1985 年 军官培训,因戈尔施塔特 1985 - 1989 年 在慕尼黑德国联邦国防军大学学习 1989 - 1991 年 因戈尔施塔特第 10 先锋营排长 1991 - 1993 年 侦察官和副官。连长,第 290 和 550 装甲工兵连 1993 – 1995 连长,第 4/第 8 山地工兵连,布兰嫩堡 1995 – 1996 陆军士官学校讲堂经理,魏登 1996 – 1998 德国联邦国防军指挥参谋学院总参谋部培训,汉堡 1998 – 2000 特种部队司令部 G3 行动,卡尔夫 2000 – 2002 武装部队联合参谋部参谋部规划主任参谋,波恩 2002 – 2003 加拿大武装部队学院第 29 指挥参谋课程学员,多伦多 2003 – 2005 空降旅第 26 参谋长,萨尔路易 2005 – 2007装甲工兵营 1,霍尔茨明登 2007 – 2008 德国联邦国防军指挥参谋学院第 3 届联合将军和海军上将服务课程 A 号讲座教授,汉堡 2008 – 2010 德国联邦国防部规划参谋长顾问和参谋,柏林 2010 – 2011 参加美国陆军高级军事研究学院高级作战艺术研究奖学金项目,莱文沃思堡 2011 – 2012 美国陆军高级军事研究学院研讨会负责人 1,莱文沃思堡 2012 – 2013 德国/荷兰第 1 军 G5(规划和政策)部门负责人,明斯特 2013 – 2014 联合保障服务司令部海外行动分部负责人,波恩 2014 – 2017联邦国防部,柏林 2017 - 2018 年 美国中央司令部德国联络司令部负责人,坦帕
1。使用原子分辨率的开尔文探针显微镜模拟的多尺度方法。修订版b 86,075407(2012)2。与扫描探针显微镜中的介电样品的静电相互作用A. Sadeghi,A。Baratoff和S. Goedecker Phys。修订版b 88,035436(2013)3。Obtaining Detailed Structural Information about Supramolecular Systems on Surfaces by Combining High-Resolution Force Microscopy with ab Initio Calculations S. Kawai, A. Sadeghi, F. Xu, L. Peng, R. Pawlak, T. Glatzel, A. Willand, A. Orita, J. Otera, S. Goedecker, and E. Meyer ACS Nano 7 , 9098 (2013) 4.具有化学准确性的规范式伪能力,物理。138,104109(2013)5。用于测量配置空间距离的指标A. Sadeghi,S.A.Ghasemi,B。Schaefer,S。Mohr,M。A。Lill,S。GoedeckerJ. Chem。物理。139,184118(2013)6。诱导了掺杂碳氮化硼纳米骨的极化和电子特性。Peeters Phys。修订版b 86,195433(2012)7。硼氮化物单层:一种菌株可调节的纳米传感器M. Neek-Amal,J。Beheshtian,A。Sadeghi,K。Michel和F. M. Peeters J. Phys。化学。C 117,13261(2013)8。物理。Lett。 103,261904(2013)9。Lett。103,261904(2013)9。使用双层石墨烯M. Neek-Amal,A。Sadeghi,G。R。Berdiyorov F. M. Peeters Appl。硼碳在硼 - 碳富勒伦斯·斯蒂芬·莫尔(Stephan Mohr),帕斯卡·波切特(Pascal Pochet),马克西米利安·阿姆斯勒(Maximilian Amsler),巴斯蒂安·谢弗(Bastian Schaefer),阿里·萨德吉(Ali Sadeghi),路易吉(Luigi),
柯尔莫哥洛夫-所罗门诺夫-柴廷(Kolmogorov,简称 Kolmogorov)复杂度由 Solomonoff [ 1 ] 和 Kolmogorov [ 2 ] 独立提出,后来柴廷 [ 3 ] 也提出了这一复杂度。该复杂度基于可以模拟任何其他图灵机的通用图灵机的发现 [ 4 , 5 ]。单个有限字符串的柯尔莫哥洛夫复杂度是能够正确生成该字符串作为输出的通用图灵机的最短程序的长度,也是对字符串所含信息量的度量。已经证明,虽然存在多种图灵机,但最短程序的长度是不变的,在底层图灵机的选择下,其差异最多为一个加法常数 [ 6 ]。柯尔莫哥洛夫复杂度理论广泛应用于问答系统 [ 7 ]、组合学 [ 8 ]、学习理论 [ 9 ]、生物信息学 [ 10 ] 和密码学 [ 11 , 12 ] 等领域。1985 年,Deutsch [ 13 ] 引入量子图灵机作为量子计算机的理论模型。量子图灵机扩展了经典图灵机模型,因为它们允许在其计算路径上发生量子干涉。Bernstein 和 Vazirani [ 14 ] 表明量子图灵机在近似意义上具有通用性。最近,一些研究者提出了一些柯尔莫哥洛夫复杂度的量子版本。Vitányi [ 15 ] 提出了量子柯尔莫哥洛夫复杂度的定义,它度量近似量子态所需的经典信息量。Berthiaume 等人 [ 16 ] 提出了一种基于柯尔莫哥洛夫复杂度的量子柯尔莫哥洛夫复杂度定义。 [16] 提出了一种新的量子比特串量子柯尔莫哥洛夫复杂度定义,即通用量子计算机输出所需字符串的最短量子输入的长度。Zadeh [17] 提出了模糊计算的第一个公式,他基于图灵机和马尔可夫算法的模糊化,定义了模糊算法的概念。随后,Lee 和 Zadeh [18] 定义了模糊语言的概念。Santos [19] 证明了模糊算法和模糊图灵机之间的等价性。接下来,Wiedermann [20] 考虑了模糊计算的可计算性和复杂性。利用 Wiedermann 的工作,Bedregal 和 Figueira [21] 证明了不存在可以模拟所有模糊图灵机的通用模糊图灵机。随后,李[22,23]研究了模糊图灵机的一些变体。他证明了
术语定义官方质量保证负责任的国家采购组织(例如采购机构)对遵守合同约定的质量要求获得信心的过程。*)。在国家(德国)合同中,可以根据定期适用的 VOL/B(服务合同条例 - B 部分)第 12 条以合同方式约定以“质量检验”形式进行的官方质量保证。客户政府和/或北约组织与承包商签订合同,具体说明产品和质量要求。承包商根据合同向客户提供产品的组织(公司)。 BfArM 德国联邦药品和医疗器械研究所 CAPA 纠正和预防措施 DIMDI 德国医学文献和信息研究所 GQAR 负责客户官方质量保证的人员。 (也可能是质量检查员)良好生产规范 (GMP) 良好生产规范 (GMP) 是质量保证的一部分,确保产品在获得批准、临床试验授权或产品规范后,按照与预期用途相符的质量标准持续生产和测试。良好分销规范 (GDP) 良好分销规范是质量保证的一部分,有助于确保在供应链的所有阶段(从生产地到药房或到获得授权或授权向公众提供药品的人员)保持药品质量。北约 北大西洋公约组织 PEI 保罗-埃尔利希研究所 其他产品 非医疗器械/配件或药品的产品。 TS-QMA 技术规范:向德国联邦国防军分包商/分包商交付医疗器械和药品的质量保证要求
Spyridon Bakas 1 , 2 , 3 , † , ‡ , ∗ , Mauricio Reyes 4 , † , Andras Jakab 5 , † , ‡ , Stefan Bauer 4 , 6 , 169 , † , Markus Remp , 19 , † , Alessandro Crimi 7 , † , Russell Takeshi Shinohara 1 , 8 , † , Christoph Berger 9 , † , Sung Min Ha 1 , 2 , † , Martin Rozycki 1 , 2 , † , Marcel Prastawa 10 , Alberts , 19 , 6 7 , † , Jana Lipkova 9 , 65 , 127 , † , John Freymann 11 , 12 , ‡ , Michel Bilello 1 , 12 , ‡ , Hassan M. Wishal-Shallah , 13 . 4 , 6 , ‡ , Jan Kirschke 126 , ‡ , Benedikt Wiestler 126 , ‡ , Rivka Colen 14 , ‡ , Aikaterini Kotrotsou 14 , ‡ , Pamela Lamontagne 15 , ‡ , Michael 17 , Michael il Milchenko 16 , 17 , ‡ , Arash Nazeri 17 , ‡ , Marc-Andr Weber 18 , ‡ , Abhishek Mahajan 19 , ‡ , Ujjwal Baid 20 , ‡ , Elizabeth Gerstner , 12 , 12 , Dong Jin 2 , † , Gagan Acharya 107 , Manu Agarwal 109 , Mahbubul Alam 33 , Alberto Albiol 34 , Antonio Albiol 34 , Francisco J. Albiol 35 , Varghese Alex 107 , Nigel Allinson 143 , Pedro 15 , Amharim HA 107 , Amharic 197 07 , Simon Andermatt 152 , Tal Arbel 92 , Pablo Arbelaez 134 , Aaron Avery 60 , Muneeza Azmat 62 , Pranjal B. 107 , Wenjia Bai 128 , Subhashis Banerjee 36 , 37 , Bill Barth 2 , Thomas Batchelman , 83 , Enzo Battistella 42 , 43 , Andrew Beers 123 , 124 , Mikhail Belyaev 137 , Martin Bendszus 23 , Eze Benson 38 , Jose Bernal 40 , Halandur Nagaraja Bharath 141 , George Biros 62 das , Sotirios Maria Cabe 123 , James Cabe 123 zas 40 , Shilei Cao 67 , Jorge M. Cardoso 76 , Eric N Carver 41 , Adri Casamitjana 138 , Laura Silvana Castillo 134 , Marcel Cat 138 , Philippe Cattin 152 , Albert C´erigues 40 , Vini Chagas , 49 , Siddha Yidd . u Chang 45 , Shiyu Chang 156 , Ken Chang 123 , 124 , Joseph Chazalon 29 , Shengcong Chen 25 , Wei Chen 46 , Jefferson W Chen 80 , Zhaolin Chen 130 , Kun Cheng 120 , Ahana Roy Roy 47 , Albert Church 40 , Steven Colleman 141 , Ramiro German Rodriguez Colmeiro 149 , 150 , 151 , Marc Combalia 138 , Anthony Costa 122 , Xiaomeng Cui 115 , Zhenzhen Dai 41 , Lutao Dai 50 , Laura Alexandra 43 , Eric Dingschang 25 , Chao Dong 65 , Shidu Dong 155 , Wojciech Dudzik 71 , 72 , Zach Eaton-Rosen 76 , Gary Egan 130 , Guilherme Escudero 159 , Tho Estienne 42 , 43 , Richard Everson , Fanat 27 , Jonathan , 29 , Longwei Fang 54 , 55 , Xue Feng 27 , Enzo Ferrante 128 , Lucas Fidon 42 , Martin Fischer 95 , Andrew P. French 38 , 39 , Naomi Fridman 57 , Huan Fu 90 , David Fuentes 58 , Yao Evan Gates , 68 , 68 Amir Gholami 61 , Willi Gierke 95 , Ben Glocker 128 , Mingming Gong 88 , 89 , Sandra Gonzlez-Vill 40 , T. Grosges 151 , Yuanfang Guan 108 , Sheng Guo 64 , Sudeep Gupta 19 , Wong Han Song 63 , Konstantin Harmuth 95 , Huiguang He 54 , 55 , 56 , Aura Hernndez-Sabat 100 , Evelyn Herrmann 102 , Naveen Himthani 62 ,Winston Hsu 111 , Cheyu Hsu 111 , Xiaojun Hu 64 , Xiaobin Hu 65 , Yan Hu 66 , Yifan Hu 117 , Rui Hua 68 , 69 , Teng-Yi Huang 45 , Weilin Huang Huve 64 H V014 Van , Khan M. Iftekharuddin 33 , Fabian Isensee 22 , Mobarakol Islam 81 , 82 , Aaron S. Jackson 38 , Sachin R. Jambawalikar 48 , Andrew Jesson 92 , Weijian Jian 119 , June Kan Marian 37 , V z 128 , Konstantinos Kamnitsas 128 , Po-Yu Kao 79 , Ayush Karnawat 129 , Thomas Kellermeier 95 , Adel Kermi 74 , Kurt Keutzer 61 , Mohamed Tarek Khadir 75 , Mahendra Kheneder 06 Philipp 107 , , Haley Knapp 60 , Urspeter Knecht 4 , Lisa Kohli 60 , Deren Kong 64 , Simon Koppers 32 , Avinash Kori 107 , Ganapathy Krishnamurthi 107 , Kushibar 13 Karivov 4 Dmitrii Lachinov 84 , 85 , Tryphon Lambrou 143 , Joon Lee 41 , Chengen Lee 111 , Yuehchou Lee 111 , Matthew Chung Hai Lee 128 , Szidonia Lefkovits 96 , Laszlo Lef7 6 iHongwet 9 65 , Wenqi Li 76 , 77 , Hongyang Li 108 , Xiaochuan Li 110 , Yuexiang Li 133 , Heng Li 51 , Zhenye Li 146 , Xiaoyu Li 67 , Zeju Li 158 , XiaoGang Li 158 , XiaoGang Li 45 , Fengming Lin 115 , Pietro Lio 153 , Chang Liu 41 , Boqiang Liu 46 , Xiang Liu 67 , Mingyuan Liu 114 , Ju Liu 115 , 116 , Luyan Liu 112 , Maro 4 Llad
为什么加拿大制造的Laribee吉他好? Laribee吉他于1968年在加拿大多伦多开始制造,并于1977年搬到加拿大环太平洋沿岸的不列颠哥伦比亚省维多利亚,创造了我们独特的吉他。声音使用来自高森林的优质云杉和雪松。 当它于 20 世纪 70 年代末传入日本时,其高品质令人惊叹,并获得了想要像 Martin 和 Gibson 那样细腻声音的用户的支持。精美的镶嵌作品是Larrivee吉他的特色之一,是由Gene Larrivee的妻子Wendy创作的。今天十年级的情况仍然如此。 20 世纪 70 年代末,包括他的妻子 Wendy 在内的 8 名工匠每月生产约 30 瓶葡萄酒。 这一时期的吉他据说是Laribee的黄金时代,抵达日本的少数10级吉他售价超过了Martin的D-45。我想可以说,这为Somogi这样的手工吉他今天被日本乐迷所接受奠定了基础。 除了产品的质量和声音的质量之外,还应该考虑民族主义的方面。虽然他们的销量不如Martin和Gibson,但他们很早就在努力表达自己的加拿大特色,并且一直讲究在加拿大生产产品。他们融入了当时不符合美国时尚的东西,例如“木质装订”、“制作精美的玫瑰花饰”、“透明护板”和“具有欧洲文艺复兴风格的镶嵌设计”。这种叛逆精神吸引了那些厌倦了美国文化消极方面(例如越南战争和全球化)的人们。有一个轶事,在吉他发展的早期,一位美国自由主义音乐家在听到有关Laribee吉他的谣言后,在多伦多的街道上徘徊,寻找一把Laribee吉他。 2001 年 9 月,Larrivee 搬迁至加利福尼亚州的一家新工厂,以进一步扩张。由于美国市场是他们最大的客户,该公司自然希望降低出口成本。然而,这让粉丝们非常失望,他们认为这是一把值得骄傲的加拿大吉他,而不是前面提到的美国吉他,这一事实是有意义的。日本粉丝也是如此。如果您想要一把来自美国西海岸的吉他,泰勒吉他就足够了。未能立即提高加州工厂的质量也增加了现有粉丝的失望。 目前,创始人吉恩·拉里维(Gene Larrivee)、他的妻子温迪(Wendy)、次子马修(Matthew)和女儿克里斯汀(Christine)在加利福尼亚州的一家工厂工作。长子吉恩·拉里维 (Gene Larrivee Jr.) 负责加拿大温哥华的工厂。独自留在加拿大的他对于在工厂度过的时光有何感想? 我无从了解他个人的挣扎,但他回应了我的评论“加拿大制造的10级吉他很好”,并为《LAST GUITAR》的开场制作了一把吉他,我不禁认为有。这不仅仅是简单地接受请求。熟练的工匠在一条单独的生产线上工作。 是的,我想他想证明这一点。自豪地在加拿大制造。第一批已经到了。使用温迪的镶嵌物,图案为留在加拿大的阿拉丁和神灯精灵,以及 AAA 级核心。
