人们对聚二乙炔的机械荧光变色行为进行了深入研究:通过二乙炔前体的光聚合获得的蓝色非发光固相在机械刺激下转化为红色发光固相。受这些化合物作为微尺度力探针的巨大潜力的启发,机械荧光变色在微藻生物技术中得以实现。事实上,微流控芯片中的机械诱导可以削弱细胞包膜并促进微藻产生的高附加值化合物的提取。据报告,基于聚二乙炔的机械荧光变色传感器能够检测微通道中施加在微藻上的应力。设计了一种三乙氧基硅烷二乙炔前体,它在紫色低发射相中光聚合,并在机械应力下转化为红色高发射相。此后,制定了一项协议,以化学方式在微流体通道中接枝一层聚二乙炔层,并最终证明,在有限区域内压缩莱茵衣藻微藻时,摩擦应力会通过聚二乙炔的机械荧光变色响应显示出来,导致荧光显著增强,最高可达 83%。这种微尺度力探针原型为微流体环境中的微尺度应力检测奠定了基础,它不仅适用于微藻,还适用于任何机械响应的细胞样本。
摘要 — 目的:完全性四肢瘫痪会使人失去手部功能。辅助技术可以提高自主性,但用户仍然需要符合人体工程学的界面来操作这些设备。尽管四肢瘫痪的人手臂瘫痪,但他们可能仍保留着残留的肩部运动。在这项研究中,我们探索了这些运动作为控制辅助设备的一种方式。方法:我们用一个惯性传感器捕捉肩部运动,并通过训练基于支持向量机的分类器,将这些信息解码为用户意图。结果:设置和训练过程只需几分钟,因此分类器可以是用户特定的。我们对 10 名身体健全和 2 名脊髓损伤参与者测试了该算法。平均分类准确率分别为 80% 和 84%。结论:提出的算法易于设置,操作完全自动化,所取得的结果与最先进的系统相当。意义:手部功能障碍人士使用的辅助设备在用户界面上存在局限性。我们的工作提出了一种新方法来克服这些限制,即对用户动作进行分类并将其解码为用户意图,所有这些都只需简单的设置和培训,无需手动调整。我们通过对最终用户的实验证明了它的可行性,其中包括完全四肢瘫痪、没有手部功能的人。
摘要 - 本研究旨在通过识别漏洞和推荐有效策略来增强起搏器设备的网络安全框架。目标是查明网络安全弱点,利用机器学习预测安全漏洞,并根据分析趋势提出对策。文献综述强调了起搏器技术从基本的固定速率设备向具有无线功能的复杂系统的转变,这在改善患者护理的同时,也带来了重大的网络安全风险。这些风险包括未经授权的进入、数据泄露和危及生命的设备故障。本研究的方法采用定量研究方法,使用 WUSTL-EHMS-2020 数据集,其中包括网络流量特征、患者的生物特征和攻击标签。机器学习预测的分步方法包括数据收集、数据预处理、特征工程和使用支持向量机 (SVM) 和梯度提升机 (GBM) 进行模型训练。实施结果使用准确度、精确度、召回率和 F1 分数等评估指标来表明 GBM 模型优于 SVM 模型。 GBM 模型的准确率高达 95.1%,而 SVM 的准确率仅为 92.5%,精确率高达 99.6%,而 SVM 的准确率仅为 96.7%,召回率高达 94.9%,而 SVM 的召回率仅为 42.7%,F1 得分高达 76.3%,而 SVM 的 F1 得分仅为 59.0%,这使得 GBM 模型在预测网络安全威胁方面更为有效。这项研究的结论是,GBM 是一种有效的机器学习模型,可通过分析网络流量和生物特征数据模式来增强起搏器网络安全。未来改善起搏器网络安全的建议包括实施 GBM 模型进行威胁预测、与现有安全措施集成以及定期更新和再训练模型。
本文档定义了GSMA确定的技术(功能)和非技术(保证)要求,这些要求可能是MDSCERT方案的一部分。MDSCERT方案使用的要求是最新版本的ETSI TS 103 732系列[2],如第2节所述。此外,本文档的第3节分别确定了安全功能和评估要求中的潜在差距,预计将在ETSI TS 103 732系列的未来版本中解决这些差距:本文档信息的信息段中提出的其他要求可以由MDSCERT方案进行认证,如MDSCERT方案,如第3节中所述。
在过去的几年中,L.E.K.Consulting与相关利益相关者的持续合作揭示了关键见解,确定了巨大的差距和提议的实用解决方案,以增强印度的医疗设备报销景观,以实现更公平,更有效的医疗保健系统。在2021年,我们的就职报告强调了印度非结构化医疗设备报销途径的挑战,并提出了针对国家和州级报销机构的定制过程。2022年和2023年的报告着重于提出对Ayushman Bharat Pradhan Mantri Mantri Jan Arogya Yojana(PM-Jay)提出的新报销框架的增量增强,该框架(PM-JAY)将健康技术评估(HTA)整合到补偿决策中。当前的报告“弥合了差距”,研究了可负担性,知识和数据的关键问题,这些问题阻碍了创新医疗技术的广泛可及性,并提供了拟议的更改。
2.2。方法论和实验结果,在每个脉冲之间,将重复的短路测试应用于DUT。测试条件为V ds = 600 V,V缓冲区= -5V/+18V和t情况=室温。已经进行了先前的研究[1,3],以估计平均T SCWT(短路承受时间),约5 µs。找到了这段时间,设置了脉冲宽度的70%T SCWT(3.5 µs)的百分比。因此,防止热失控,然后防止了灾难性的排水量故障模式。SC中的所有测试设备仅显示栅极源降解。图2,第一个短电路事件(#Cycle1,蓝线)和最后一个(#Cycle400,红线)中的波形显示。在栅极电流(I G)上观察到的异常效应(电流凸起)可能是由于PCB(印刷板电路)寄生元件引起的电磁干扰以及相关的共同模式电流。
。CC-BY-NC 4.0国际许可证的永久性。根据作者/资助者提供的预印本(未经Peer Review的认证)提供,他已授予Biorxiv的许可证,以在2025年2月7日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.02.02.636143 doi:Biorxiv Preprint
☐ 交通信号灯计划显示,变化间隔(例如黄灯、红灯和行人清空时间)已经根据 CTDOT 交通控制信号设计手册第 6 章进行了优化。
1读者应注意,由于加密,编码和复杂的应用程序协议,仅边界设备执行就不足以保护内部系统和数据免受外部威胁。通过在零信任体系结构的背景下实施更接近受保护的资源的政策执法,鼓励组织从对边界保护等边界保护的过度依赖。有关实施零信任体系结构的更多信息,请参见网络中心的网络和安全策略以及对安全架构的零信任方法,国家标准技术研究所(NIST)SP 800-207,零信任体系结构以及网络安全和基础设施安全机构(CISA)的信任零信任零。