Ernest Lee Abbott 纳帕学院,加利福尼亚州纳帕 Phillip D. Anderson 马斯基根社区学院,密歇根州马斯基根 Al Anthony EG&G VACTEC Inc. A. Duane Bailey 南阿尔伯塔理工学院,加拿大阿尔伯塔省卡尔加里 Joe Baker 南加州大学,加利福尼亚州洛杉矶 Jerrold Barrosse 宾夕法尼亚州立大学奥贡茨分校 Ambrose Barry 北卡罗来纳大学夏洛特分校 Arthur Birch 哈特福德州立技术学院,康涅狄格州哈特福德 Scott Bisland SEMATECH,德克萨斯州奥斯汀 Edward Bloch 珀金埃尔默公司 Gary C. Bocksch Charles S. Mott 社区学院,密歇根州弗林特 Jeffrey Bowe 邦克山社区学院,马萨诸塞州查尔斯顿 Alfred D. Buerosse 沃基肖县技术学院,威斯康星州皮沃基 Lila Caggiano MicroSim 公司 Mauro J. Caputi 霍夫斯特拉大学 Robert Casiano 国际整流器公司 Alan H. Czarapata 蒙哥马利学院,马里兰州罗克维尔Mohammad Dabbas ITT 技术学院 John Darlington 加拿大安大略省汉博学院 Lucius B. Day 大都会州立学院,科罗拉多州丹佛市 Mike Durren 印第安纳职业技术学院,印第安纳州南本德市 Dr. Stephen Evanson 英国布拉德福德大学 George Fredericks 东北州立技术社区学院,田纳西州布朗特维尔市 FD 加拿大安大略省富勒汉博学院
本章概述了射频(RF)技术的基础科学和特定操作原理,重点是最小侵入性应用,增强了吸脂性程序。在讨论射频辅助脂解(RFAL)和分数RF RF下层治疗的参数,设置和技术之前,了解RF技术和应用的基础科学的基础知识很重要。本章准确地描述了基于RF的治疗过程中发生的过程的物理,以及影响其安全有效结果的因素。对基于RF的设备的讨论将使用FDA电脑设备指南提供的术语和定义。还提出了作者进行的测量和计算机模拟,以说明不同参数对于皮肤和皮下脂肪的特定处理的重要性。
核爆炸装置 (NED) 是近地天体 (NEO) 减缓的三个最成熟的概念之一,另外两个是动能撞击器 (KI) 和重力牵引器 (GT) [17]。根据美国国家近地天体防备战略和行动计划 [18],这三个概念以及一些不太成熟但具有潜在前景的概念目前正处于不同的研究和开发阶段。在这里,我们讨论了 NED 如何用于行星防御任务,并描述了在哪些情况下可能需要或优先使用 NED 进行行星防御。以下小节中引用的分析和结果基于对现有 NED 的建模,不假设任何新的 NED 开发。无需新的 NED 设计来应对最可能的未来 NEO 威胁,这是迄今为止关于该主题的研究的一个重要发现 [4]。本研究的另一个重要假设是,NED 是根据需要从地球发射并随后直接前往目标 NEO 而提供的。目前尚未对在太空或地面上预先部署 NED 进行建模,目前的研究也未表明在太空预先部署 NED 会改善行星防御任务的性能。事实上,由于缺乏用于行星防御目的的首选分级轨道,在太空预先部署 NED 可能会降低任务的整体性能,包括弹道飞行时间、运送到目标的质量和其他性能指标。
摘要:目前可用的能够达到原子分辨率的分子成像技术仅限于低温、真空条件或大量样品。基于金刚石中氮空位 (NV) 中心自旋相关光致发光的量子传感器具有在环境条件下实现具有原子分辨率的单分子检测的巨大潜力。金刚石纳米粒子也可以通过植入 NV 中心来制备,从而实现能够进入活体生物系统的独特纳米传感器。因此,该技术可能提供前所未有的途径和洞察力,了解生理条件下单个生物分子的结构和功能,并能够以原子分辨率观察量子级的生物过程。本综述对金刚石量子传感器的理论以及从制备到传感技术的最新发展进行了批判性讨论。
摘要。本文采用计算机建模方法,考虑优化基于热管和冷却环的被动空气系统设计,以冷却大功率 LED 灯具。研究了冷却系统的热特性和质量特性,设计参数包括环间距离、环材料厚度和热负荷。结果表明,为了使 LED 光源外壳温度最小,冷却环之间的最佳距离应为 6 毫米,但在这种情况下,冷却系统的质量并不最小。为了降低灯具质量,选择冷却环之间的距离等于 8 毫米是合理的。这样,光源温度仅增加 1.8°С,即 2.2%,而冷却系统的质量减少 1357 克,即 20.5%。同时,将环厚度从 2 毫米降低到 0.8 毫米,还可以将质量减少 2700 克,即 48.6%。然而,这样做时 LED 光源外壳的温度会升高 5.9°С 。所提供的基于热管的冷却系统在 LED 光源晶体最高温度 135.5°С 下分散 500W 热功率时能够提供 0.131°С/W 的热阻。已经制定了开发冷却系统的应用建议。
Ernest Lee Abbott 纳帕学院,加利福尼亚州纳帕 Phillip D. Anderson 马斯基根社区学院,密歇根州马斯基根 Al Anthony EG&G VACTEC Inc. A. Duane Bailey 南阿尔伯塔理工学院,加拿大阿尔伯塔省卡尔加里 Joe Baker 南加州大学,加利福尼亚州洛杉矶 Jerrold Barrosse 宾夕法尼亚州立大学奥贡茨分校 Ambrose Barry 北卡罗来纳大学夏洛特分校 Arthur Birch 哈特福德州立技术学院,康涅狄格州哈特福德 Scott Bisland SEMATECH,德克萨斯州奥斯汀 Edward Bloch 珀金埃尔默公司 Gary C. Bocksch Charles S. Mott 社区学院,密歇根州弗林特 Jeffrey Bowe 邦克山社区学院,马萨诸塞州查尔斯顿 Alfred D. Buerosse 沃基肖县技术学院,威斯康星州皮沃基 Lila Caggiano MicroSim 公司 Mauro J. Caputi 霍夫斯特拉大学 Robert Casiano 国际整流器公司 Alan H. Czarapata 蒙哥马利学院,马里兰州罗克维尔Mohammad Dabbas ITT 技术学院 John Darlington 加拿大安大略省汉博学院 Lucius B. Day 大都会州立学院,科罗拉多州丹佛市 Mike Durren 印第安纳职业技术学院,印第安纳州南本德市 Dr. Stephen Evanson 英国布拉德福德大学 George Fredericks 东北州立技术社区学院,田纳西州布朗特维尔市 FD 加拿大安大略省富勒汉博学院
医疗设备亲爱的数字健康咨询委员会,我有幸分享了FDA对Genai AI-ai-ai-ai-ai-ai-ai-ai-ai-ai-ai-ai-ai-ai-ai-ai咨询问题的回答。convengen AI是一家研究和咨询公司,致力于促进负责任的临床Genai解决方案的负责开发和实施。我们的方法论强调了这些技术生命周期的每个阶段的透明度,问责制和安全性,同时还指导组织建立坚持行业最佳实践的强大治理框架。所附文件概述了FDA的一般路线图,以指导其在这个快速发展的领域中的监管监督。我们的回答强调了评估临床环境中Genai解决方案的安全性,有效性和治理的重要考虑因素。convengen AI致力于支持FDA和利益相关者应对评估和实施细节,以确保这些技术的安全有效部署。感谢您考虑我们的见解。我们期待为对这些重要技术的调节进行持续的对话做出贡献。真诚的,MD博士创始人Fabio Thiers -Revengen AI
•综合报告包括资产详细信息,例如设备名称和模型,IMEI代码,存储容量和诊断测试结果•报告可以导出为PDF或XML。CSV文件只能从Blancco管理控制台中•可以将自定义字段(例如客户名称和资产ID)添加到报告中•数字签名,防篡改的报告被上传到上传,并易于通过Blancco Management Portal访问,以便通过Blancco Management Portal访问完整的审核跟踪•需要高端硬件以与高级硬件运行多个固件上的上升。•不建议MacBook Air Devices
- 等离子体过程 - 微电子应用的新技术和材料 - 连续培养基物理学的概念 - 量子现象,例如扩散,电子顺磁共振和量子密码学:基于半导体量子量量子量的纠缠状态,单个状态,单个状态和成对的状态。