微生物组革命移动了微生物学家的守门柱。几个世纪以来,微生物学一直在理解相对少量的微生物上。这些模型物种是因为它们对健康,环境,工业的重要性,或仅仅是因为该物种易于使用。微生物学家在整个分子,遗传和基因组旋转中保持了关注,但是宏基因组革命使得不可能忽略我们世界各个方面发现的成千上万种研究的物种(DeWhirst等人。2010; Quast等。2013; Parks等。2018)。微生物组的科学崛起令人兴奋,但它给微生物学带来了巨大的实践挑战。如果只花了几个世纪的时间才能学习几种模型物种的细节,我们如何才能理解成千上万的新发现物种?为了说明研究研究的数据的匮乏,我们进行了文献计量分析,以提出微生物学研究的不均匀分布。GTDB数据库的版本202(Parks等人2022)包括43,409种独特的物种,我们计算了参考标题或摘要中每个物种的PubMed文章数量。结果严重偏斜。几乎74%的已知物种从来都不是科学出版物的主题 - 这些是未研究的细菌(图1A)。即使在研究的物种中(至少有一个出版物),所有文章中的50%仅指十种物种(图1b)。因此,我们的知识密度(我们每个物种所学的数量)实际上正在减少。所有细菌学文章中有90%以上研究的物种的研究不足1%,从而产生了细小的微生物的“长尾巴”。科学企业正在扩大,每年科学家发表的论文比久违的年份(国家科学基金会和国家科学委员会2021年)多4-5%。很容易想到,科学产量的增加将克服微生物的长尾巴,也就是说,科学家最终将四处研究每个物种。不幸的是,每年发现的物种数量超过了科学产出的增加(图1C)。在1990 - 2020年之间,每个研究的细菌种类发表的论文数量降低了60%(图1D)。当我们的很多理解来自少量的小动物时,我们对细菌多样性的看法就会有偏见。微生物学家杰弗里·格拉尼克(Jeffery Gralnick)曾经打趣说:“大肠杆菌是大肠杆菌的伟大模型生物。”格拉尼克(Gralnick)的评论提到在Shewanella Oneidensis的TCA周期中发现异常(相对于大肠杆菌)(Brutinel and Gralnick 2012)。尽管Oneidensis链球菌的引用减少了201倍,但可以说不是一个研究的物种。我们的分析将其排名为研究最多的细菌,在所有物种中排名前2.17%。即使是格拉尼克上述论文的简介也将S. oneidensis表示为“模型环境有机体”。如果在微生物2%之外发现了S. Oneidensis的TCA周期等差异,请想象其他98%的微生物中的多样性。微生物学家如何赶上爆炸的生命树?我们提出了两个宏伟的挑战,以培训一代可以解决微生物世界多样性的微生物学家。首先,我们需要采用多因素实验设计。一次进行一次研究的物种,菌株,基因,环境,压力源和表型。统计学家已经教导了数十年来,最有效,最强大的实验设计同时改变了多个因素,然后对效果进行解析