简介 在精神病学领域,三环类抗抑郁药被广泛用于治疗各种疾病,尤其用于治疗临床抑郁症 [1–3]。在大多数情况下,这些药物的主要目的是抑制突触前区域对去甲肾上腺素或血清素的吸收。然而,这些药物的效力各不相同,而且往往会引起不良的副作用。尽管有更新、更安全的替代品,但三环类抗抑郁药仍然被用作处方药,因为它们成本较低,而且是一类最突出的抗抑郁药。尽管还有其他选择,情况仍然如此。三环原子构成三环抗抑郁药的分子结构,这些药物的名称由此而来 [4–7]。在大多数情况下,核心环由七个原子组成,侧链由 N-烷基甲胺或 N-烷基二甲胺组成。丙咪嗪、地昔帕明、氯米帕明、阿米替林、去甲替林、多塞平和曲米帕明等药物是常用的三环类抗抑郁药的例子[8-10]。
摘要在超高压力下(例如,H 3 S和LAH 10)在基于氢化物的材料中的超导性观察引起了人们对发现新的高压氢化物超导体的更具数据驱动方法的兴趣。在这项工作中,我们进行了密度功能理论(DFT)计算,以预测(0-500)GPA的压力范围内900多种氢化物材料的临界温度(T C),在此,我们发现122个动态稳定的结构,在MGB 2(39 K)上方的t C上有122个T C c。为了加速筛选,我们训练了图形神经网络(GNN)模型,以预测T C,并证明可以使用通用机器学习的力场来放宽在任意压力下的氢化物结构,并大大降低了成本。通过组合DFT和GNN,我们可以在压力下建立更完整的氢化物图。
双钙钛矿卤化物是可再生能源生产的有前途的材料,满足解决能源稀缺问题的标准。因此,研究这些卤化物可能对光电和太阳能电池应用有用。在这项研究中,我们使用全电位线性线性的增强平面波(FP-LAPW)方法,使用密度功能理论计算,研究了2 agircl 6(a = cs,rb,k)的结构,机械,热力学,电子和光学特性,以评估其适用于renewability的适用性,并使用全电位线性的增强平面波(FP-lapw)方法来计算。金匠公差因子,八面体因子和新的公差因子已经证实了预测化合物的立方稳定性。我们还通过计算形成焓,结合能和声子分散曲线来验证这些化合物的热力学稳定性。此外,对刚度常数的Born-huang稳定性要求证实了标题化合物的机械稳定性。为了预测准确的光电特性,我们采用了TB-MBJ电位。电子带结构的计算表明,标题为halides的直接带隙半导体性质,值分别为1.43 eV,1.50 eV和1.55 eV,分别为CS 2 AGIRCL 6,RB 2 AGIRCL 6和K 2 AGIRCL 6。此外,所有这些化合物都显示出非常低的有效电子质量,表明它们的高载体迁移率可能。这些化合物的光电导率和吸收光谱验证了我们的条带结构结果的准确性。此外,2 AGIRCL 6(A = CS,RB,K)化合物的光学性质表现出非常低的反射率和出色的光吸收系数(10 5 cm -1)在可见光光谱中,表明它们作为太阳能电池中吸收层的适合性。
通过执行密度功能理论(DFT)计算来研究非甾体类抗炎药的吸附,提供了抽象的药物输送见解。布洛芬(IBU),由铁掺杂的碳化硅(FSIC)石墨烯单层。在这方面,优化了IBU,SIC和FSIC的单个模型以获得其稳定的几何形状和特征,其中为增强的FSIC石墨烯单层发现了出色的成就,可用于原始的SIC石墨烯单层,以与IBU物质相互作用。随后,通过重新调整Bimolecular模型来获得IBU@SIC和IBU@FSIC复合物,并以-1.44 kcal/kcal/kcal/kcal/kcal/mol和-43.14 kcal/mol/mol/mol,相应地,对IBU的相互作用和SIC和SIC和FSIC的单层相互作用的形成进行了研究。此外,还发现了铁掺杂区域在管理FSIC和IBU对应物之间的相互作用方面的显着作用。o…fe相互作用在IBU@FSIC复合物中的存在得到了分子(QTAIM)分析中原子量子理论的结果肯定。电子分子轨道结果表明,与SIC石墨烯单层相比,FSIC石墨烯单层较软,可以更好地参与与IBU物质的相互作用。比较了态度(DOS)图(DOS)图和能量差距(GAP)距离的距离(GAP)的距离(GAP)的距离(GAP)距离与单一石墨烯单层与复杂状态的边界分子水平的距离相比,FSIC比SIC更容易IBU检测IBU检测。作为最后的说明,在该领域进一步研究后,发现了IBU@FSIC复合物的适用性,可作为拟议的药物输送平台工作。
胞嘧啶分子的结构优化通过12步实现,优化能量为-10749.84 eV。4.94 eV的HOMO-LUMO能隙表明化学稳定性。氧原子表现出最负的电势,氢原子表现出最正的电势。态密度显示能隙为4.92 eV,证实了等效轨道能级。计算的硬度(2.47 eV)和柔软度(0.41 eV -1 )表明稳定性和极化性。化学势为-3.97 eV,电负性为3.97 eV。亲电指数为3.19 eV,表明亲电行为强。Mulliken电荷分析确定H13具有最高的正电荷,N5具有最高的负电荷。振动分析表明CH振动在3100-3300cm -1 ,NH在3500-3700cm -1 ,C=O振动在1771.10cm -1 。热力学性质如热容量、内能、焓和熵随温度的升高而增大,而吉布斯自由能则降低。
以12个步骤实现了胞嘧啶分子的优化结构,其优化能为-10749.84 eV。4.94 eV的Homo-Lumo能隙表示化学稳定性。氧原子表现出最负电位,氢原子显示出最积极的电位。状态的密度揭示了4.92 eV的能隙,确认了等效轨道能级。计算出的硬度(2.47 eV)和柔软度(0.41 eV -1)表明稳定性和极化性。化学势为-3.97 eV,电负性为3.97 eV。3.19 eV的亲电指数表示强烈的亲电行为。Mulliken电荷分析鉴定H13具有最高的正电荷和最高负电荷的N5。振动分析显示,在3100-3300 cm -1,N-H处的C-H振动为3500-3700 cm -1,而C = O时为1771.10 cm -1。热力学特性,例如热容量,内部能量,焓和熵随温度的增加,而Gibbs自由能降低。
摘要:乳腺癌是全球最常见、最致命的癌症类型。鹰嘴豆素A是一种天然异黄酮,具有多种生物学和药理学特性。本研究利用密度函数理论(DFT)的量子化学研究探索鹰嘴豆素A的结构特征,并通过分子对接模拟揭示其抑制乳腺癌的特性。首先使用DFT/B3LYP方法以6-311++(d,p)基组对先导分子进行优化。进行模拟静电势以评估先导分子的反应性,并通过基于能隙、化学势(μ)、电负性(χ)、硬度(η)和软度(S)值的HOMO-LUMO分析评估分子反应性和稳定性。进行Mulliken原子电荷分布以确定分子的反应位点,并进行自然布居分析以计算电子分布。随后通过分子对接研究评估鹰嘴豆素A与乳腺癌靶蛋白的相互作用,并通过药代动力学评价评价先导分子的类药性,结果表明该先导分子没有违反Lipinski规则,对HER-2(PDB ID:2IOK)具有最高的结合亲和力,对接评分为-9.2Kcal/mol。
perovskites,特别是CSPBX 3(X = F,Cl,Br,I),正在引起人们的注意,因为它们的显着光电特征,适用于诸如太阳能电池,LED和光电探测器之类的应用。利用密度功能理论(DFT),本研究探讨了CSPBX 3的电子,机械和光学性能。CSPBI 3和CSPBBR 3具有较大的带隙和出色的光学特征的理想电子特征,使其最适合太阳能电池和LED。CSPBF 3对于出色的机械性能而突出,非常适合闪烁体等应用。总体而言,电子和光学方面的CSPBI 3和CSPBBR 3 Excel Excel,而CSPBF 3在机械上是强大的。(收到2024年1月12日; 2024年8月14日接受)关键字:DFT,状态密度,光学性质,弹性属性1。简介钙钛矿是与矿物钙钛矿共有特定晶体结构的材料类别,它具有通用的式ABX 3,并包含阳离子A和B以及阴离子X [1] - [5]。由于它们在各种技术中的潜在用途,例如太阳能电池[6] - [9],发光二极管LED [10],Lasers [11],光电探测器[12],储能设备[13]和传感设备[14] perovskites最近引起了很多关注。尤其是钙钛矿太阳能电池已经看到了惊人的效率进步,并有可能替代常规的基于硅的太阳能电池作为低成本和有效的选择[15]。由钙钛矿制成的材料具有某些特征,使它们非常适合这些用途[16]。,由于其高吸收系数,它们可以吸收大量的光,并具有相对较少的材料层[17]。此外,由于它们的高电荷载体迁移率[18],它们可以适应各种应用,从而促进了快速电荷转移[19],并且能够通过改变材料的组成[20]来控制其带隙。钙钛矿太阳能电池的高功率转换效率和廉价的制造方法帮助他们迅速将自己确立为最有希望的下一代太阳能技术之一[21]。
摘要:对当前癫痫疗法的抵抗力的增加强调了开发具有新的作用机理的新型抗癫痫剂的必要性。lacosamide和carbamazepine衍生物在结构上与抗癫痫药相关,据报道没有碳酸酐酶抑制性能。计算建模可以成为实验者的强大工具,为研究系统提供了严格的算法。这对于测试假设并在实验之前制定实验方案可能很有价值。因此,本研究旨在使用计算方法来确认所选癫痫抑制剂的实验主张。通过混合功能性B3LYP 6-311 ++ G(d,p)与ADME/TOX(吸收,分布,代谢,新陈代谢,排泄和毒性)预测相关,可药物,物理性,物理化学,药物学和药物动力学和药物代理,例如潜在抑制剂。所有化合物都通过了Lipinski的五个规则,表明其潜在的口服使用。为了了解相互作用的模式和结合能的模式,已经对类似物进行了分子对接研究,该研究已经使用了多个靶标,例如电压门控的T型钙通道(CA V 3.1),电压门控钠通道α(Na v 1.5),Na v 1.5),人碳氧化氢酶2(Human Carbonic Anhydrase 2(HCA-II II)和GAB AICIN(HCA-II)和GAB AININO(GAB AININ)(GABA)和γ-Andic andIno。与大多数受体对接时,BIA 2-024,卡马西平和埃斯卡尔巴西平的化合物显示出最好的对接相互作用和∆G°。这些结果预测了这些化合物作为潜在的抗癫痫药(AED)的作用。