日期:6 06,2024摘要:评估指标在评估糖尿病预测模型的性能中起着至关重要的作用。这些模型旨在根据年龄,体重,家族病史和血糖水平等各种因素来预测个体发展糖尿病的可能性。对这些模型的准确评估对于确保其有效性和可靠性至关重要。本文概述了常用的评估指标,以评估糖尿病预测模型的性能。本文讨论的评估指标包括准确性,灵敏度,特异性,精度,接收器操作特征(ROC)曲线,ROC曲线下的面积(AUC)(AUC),F1分数和Matthews相关系数(MCC)。定义了每个度量标准,并解释了其计算方法,解释和局限性。本文强调了考虑模型的目标和应用以及不同指标之间的权衡的重要性,以选择最合适的评估方法。此外,本文重点介绍了模型评估中的其他考虑因素,例如用于模型概括,偏见和公平评估以及预测校准的交叉验证。这些因素有助于全面的评估过程,并确保糖尿病预测模型的可靠性和公平性。
### 作为卫生领域的领导者,塔尼县卫生局为追求健康生活方式和环境的塔尼县居民和游客提供服务。塔尼县卫生局的使命是为人们创造一个健康安全的社区,供他们现在和将来生活、工作和娱乐。自 1961 年以来,我们一直关爱、服务和保护塔尼县。请访问我们的网站 www.taneycohealth.org 了解有关我们服务的更多信息。
三名晚期癌症患者正在接受免疫检查点抑制剂 (ICI) 治疗,无糖尿病 (DM) 病史,因多尿、多饮和体重减轻被送入急诊室,并被诊断为糖尿病酮症酸中毒,但无感染的临床证据。他们接受了液体和胰岛素输注治疗,然后改用基础-餐时胰岛素治疗方案,并在出院后继续治疗。糖尿病自身抗体检测呈阴性,他们被诊断为 ICI 诱发的糖尿病,其中两人使用了帕博利珠单抗,另一人使用了纳武单抗。本病例系列的目的是展示接受 PD-1 抑制剂治疗的患者中急性 DM1 的发展。基于这些病例和所审查的文献,我们力求确定临床特征并提出对接受 ICI 治疗的患者的识别、控制、早期治疗和随访的策略,以尽量减少自身免疫功能障碍的影响。关键词:1型糖尿病;糖尿病酮症酸中毒;免疫检查点抑制剂。
FitterFly是一家ISO-13485认证的数字健康公司,专门用于2型糖尿病的数字疗法。我们提供营养,健身,压力和睡眠管理的生活方式干预措施,旨在减少和维持健康的血糖水平和体重。我们结合了尖端技术和个性化的教练来做到这一点。我们的结果已在全球顶级糖尿病以及代谢健康会议和出版物上呈现和/或出版。
统计(DRG统计),该统计是由德国联邦统计办公室收集的,用于医院服务的成本帐户[15]。DRG统计数据包含有关患者的年龄,性别和居住地的形成,以及有关GER的所有大约1900万个医院病例的疾病和手术的信息。由于DRG统计数据不包含有关收入和教育的信息,因此德国社会经济剥夺指数(GISD版本2022 V 0。2)[16]用于社会经济差异。该指数包括所有地区(称为克雷斯)的教育,就业和收入状况的信息,并将其分为奎因瓷砖,范围从低到高社会经济剥夺[17]。五分位数1反映了社会经济贫困较低的地区,五分位数2至4中等贫困的地区和五分位数5个地区的社会经济贫困较高的地区。GISD通过患者的居住区与医院统计数据相关。
摘要:基于机器学习的糖尿病预测模型已在医疗保健中引起了人们的重大关注,作为糖尿病早期检测和管理的潜在工具。但是,这些模型的成功实施在很大程度上取决于医疗保健专业人员的参与。本摘要探讨了医疗保健专业人员在实施基于机器学习的糖尿病预测模型中的作用。医疗保健专业人员通过与数据科学家和机器学习专家合作,在这些模型的开发和实施中起着至关重要的作用。他们的临床专业知识和领域知识有助于确定相关的数据源和模型开发变量。他们还确保数据质量和完整性,在整个过程中解决道德方面的考虑。在实施阶段,医疗保健专业人员负责数据收集和预处理,包括从电子健康记录和可穿戴设备中收集患者数据。他们在清洁和组织模型输入数据时确保数据隐私和安全性。医疗保健专业人员评估和验证模型的性能和准确性,评估局限性和潜在偏见。集成到临床工作流程中是医疗保健专业人员的另一个关键责任。他们与IT部门合作,无缝整合
我还去了糖尿病教育者,以更好地了解我可以做些什么来改善我的日常血糖水平和整体HBA1C。她不是很有帮助,我走开了,感觉自己浪费了好钱,几乎没有结果。快速前进了更多时间,尽管我的药物治疗,我仍在努力管理血糖水平。我决定自学,我发现了很多与食物有关的信息,这些信息没有告诉我。为了了解食物如何影响我,我开始手指更频繁地刺。醒来,在用餐前,饭后2小时和睡前。每天8个手指刺,有时候如果我感到有些不适,有时会更多。这太过分了,有时不便,我的手指开始受伤。我决定尝试CGM。我很沮丧地得知我没有资格获得补贴,因为我不是1型糖尿病患者。i然后决定以全价购买一个尝试。我穿了两个星期。在第一周,我正常吃,第二周,我根据自己收集的新信息吃饭。
年轻时被诊断出患有2型糖尿病(T2D)的人正在增加,并且患心血管疾病的风险升高(CVD)(1)。先前的研究表明,诊断时糖尿病亚组除以年龄的差异表现出遗传危险因素的差异(2),并且患有早发T2D的糖尿病差异具有较高的T2D多基因风险评分(PRS)(3)。然而,与T2D诊断时与年龄相关的遗传异质性是否会影响过多的CVD风险仍然很大未知。与常见的土壤假设一致(4),我们假设在早发糖尿病患者中对CVD的遗传易感性增加。我们分析了来自两个前瞻性共同体的数据,以调查对较早的T2D诊断对事件CVD的遗传影响增加。此外,由于建议一种健康的生活方式来抵消CVD的遗传风险增加(5,6),因此我们探索了通过T2D诊断时的年龄通过健康的生活方式层次来修改对CVD的遗传影响。
已经对数据挖掘在包括CAD在内的疾病诊断中的应用进行了各种研究; [9,10]将建议的模型与基于PSO的自适应神经融化推理系统(PSO -ANFIS)进行了比较。结果表明,建议的模型优于PSO -ANFIS模型。建议的模型还具有2个重要好处:(1)它很快学习,(2)响应迅速。对于大型准确的数据集,快速学习和快速响应能力的重要性很重要。[11] Jackins等。进行了一项研究,以找到可用数据集中诊断糖尿病,冠心病和癌症的模型。他们使用幼稚的贝叶斯分类和随机森林(RF)分类算法进行数据集的分类。结果表明,三种疾病的RF模型的准确性高于幼稚贝叶斯分类器的精度值。[12] Das等。使用统计分析系统,引入了一种诊断心脏病的方法。神经网络集合方法位于提议系统的中心。从从克利夫兰心脏病数据库中获得的数据中获得的分类准确性为89.01%。另外,在心脏病的诊断中分别获得了80.95%和95.91%的敏感性和特异性。[14] Dutta等。[13] Olaniyi和Oyedotun提出了一个基于人工神经网络(ANN)的三步模型来诊断心绞痛,其精度为88.89%。提出了具有卷积层的有效神经网络。他们提出的模型在预测冠心病方面的准确性达到了77%。该模型还能够比传统方法(例如支持向量机(SVM)和RFS)更准确地预测负面案例。[15]
摘要:医疗保健对于健康生活非常重要。但是,如果您有健康问题,就很难寻求医疗帮助。建议的概念是开发一个医疗聊天机器人,该聊天机器人可以采用人工智能来分析疾病并生成与医生讨论的病情相关的必要信息。医疗聊天机器人的建立是为了降低医疗成本并改善获取医疗知识的途径。一些聊天机器人充当医疗手册,帮助患者了解自己的疾病并改善健康状况。如果用户能够诊断多种疾病并提供所需的数据,他们肯定可以从聊天机器人中受益。文本诊断机器人使患者能够参与对其药物问题的分析,并根据症状提供个性化的分析报告。因此,人们对自己的健康和个人稳定性有自己的看法。
