方法:从基因表达综合数据库中获取 HFpEF 小鼠数据集(GSE180065,包含 10 个 HFpEF 和 5 个对照样本的心脏组织)。比较 HFpEF 组和对照组的基因表达谱,以识别差异表达的 EMRG(DE-EMRG),并使用机器学习算法筛选具有诊断价值的诊断生物标志物。同时,我们构建了基于生物标志物的列线图模型以评估其预测能力,并使用单基因集富集分析、药物预测和调控网络分析对诊断生物标志物的功能进行研究。此外,利用基于诊断生物标志物表达的共识聚类分析来识别差异 HFpEF 相关基因(HFpEF-RG)。对 HFpEF 和亚型进行免疫微环境分析,以分析免疫细胞与诊断生物标志物以及 HFpEF-RG 之间的相关性。最后,对HFpEF小鼠模型进行qRT-PCR分析,以验证诊断生物标志物的表达水平。
统计(DRG统计),该统计是由德国联邦统计办公室收集的,用于医院服务的成本帐户[15]。DRG统计数据包含有关患者的年龄,性别和居住地的形成,以及有关GER的所有大约1900万个医院病例的疾病和手术的信息。由于DRG统计数据不包含有关收入和教育的信息,因此德国社会经济剥夺指数(GISD版本2022 V 0。2)[16]用于社会经济差异。该指数包括所有地区(称为克雷斯)的教育,就业和收入状况的信息,并将其分为奎因瓷砖,范围从低到高社会经济剥夺[17]。五分位数1反映了社会经济贫困较低的地区,五分位数2至4中等贫困的地区和五分位数5个地区的社会经济贫困较高的地区。GISD通过患者的居住区与医院统计数据相关。
简介................................................................................................................................................. 4
VHS是排除或消除狗心脏病的有用工具(Guglielmini等人。2009)。 当可将二极管造影不可行时,VHS也可以用作识别B2期退行性瓣膜疾病患者的替代品,这是启动心脏疗法的阈值(ITO 2022)。 补充,随着时间的推移,VHS的绝对VHS和变化已被证明可以预测多项研究的心力衰竭开始(Boswood等人。 2016,2020)。 VHS确实具有一定的可变性来源。 两项荧光镜研究的平均变化在心脏周期的收缩期和舒张期之间的平均变化约为0.3至0.4。 在呼吸周期的灵感和外向阶段之间也可以平均变化0.2椎骨(Olive etal。 2015)。 最后,人类的可变性研究表明,不同读取器的平均差异约为0.4至1.0椎骨(Hansson等人。 2005)。 最近,用于支持兽医心脏病学临床诊断的计算机辅助算法的开发已经增加(Burti等人 2020,Li等。 2020)。 计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。 2021)。 此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。 2017)。 2021,Baisan&Vulpe 2022,Wiegel等。2009)。当可将二极管造影不可行时,VHS也可以用作识别B2期退行性瓣膜疾病患者的替代品,这是启动心脏疗法的阈值(ITO 2022)。补充,随着时间的推移,VHS的绝对VHS和变化已被证明可以预测多项研究的心力衰竭开始(Boswood等人。2016,2020)。VHS确实具有一定的可变性来源。两项荧光镜研究的平均变化在心脏周期的收缩期和舒张期之间的平均变化约为0.3至0.4。在呼吸周期的灵感和外向阶段之间也可以平均变化0.2椎骨(Olive etal。2015)。最后,人类的可变性研究表明,不同读取器的平均差异约为0.4至1.0椎骨(Hansson等人。2005)。 最近,用于支持兽医心脏病学临床诊断的计算机辅助算法的开发已经增加(Burti等人 2020,Li等。 2020)。 计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。 2021)。 此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。 2017)。 2021,Baisan&Vulpe 2022,Wiegel等。2005)。最近,用于支持兽医心脏病学临床诊断的计算机辅助算法的开发已经增加(Burti等人2020,Li等。 2020)。 计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。 2021)。 此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。 2017)。 2021,Baisan&Vulpe 2022,Wiegel等。2020,Li等。2020)。计算机辅助的临床决策支持提高了依从性临床指南(Taheri Moghadam等人。2021)。此外,由于人类疲劳,注意力不集中和分心,常规诊断期间的人为错误通常是不可避免的(Alexander 2010,Waite等,Waite等人。2017)。2021,Baisan&Vulpe 2022,Wiegel等。此外,可以根据狗品种,身体状况和心脏状况进行VHS测量的其他差异来源(Puccinelli等人。2022)。本研究的目的是评估使用简化的Sanchez方法的使用VHS算法的性能与使用Buchanan方法在三位董事会认证的兽医心脏病学家之间分配的1200个X光片相比,使用了1200个X射线照片。
已经对数据挖掘在包括CAD在内的疾病诊断中的应用进行了各种研究; [9,10]将建议的模型与基于PSO的自适应神经融化推理系统(PSO -ANFIS)进行了比较。结果表明,建议的模型优于PSO -ANFIS模型。建议的模型还具有2个重要好处:(1)它很快学习,(2)响应迅速。对于大型准确的数据集,快速学习和快速响应能力的重要性很重要。[11] Jackins等。进行了一项研究,以找到可用数据集中诊断糖尿病,冠心病和癌症的模型。他们使用幼稚的贝叶斯分类和随机森林(RF)分类算法进行数据集的分类。结果表明,三种疾病的RF模型的准确性高于幼稚贝叶斯分类器的精度值。[12] Das等。使用统计分析系统,引入了一种诊断心脏病的方法。神经网络集合方法位于提议系统的中心。从从克利夫兰心脏病数据库中获得的数据中获得的分类准确性为89.01%。另外,在心脏病的诊断中分别获得了80.95%和95.91%的敏感性和特异性。[14] Dutta等。[13] Olaniyi和Oyedotun提出了一个基于人工神经网络(ANN)的三步模型来诊断心绞痛,其精度为88.89%。提出了具有卷积层的有效神经网络。他们提出的模型在预测冠心病方面的准确性达到了77%。该模型还能够比传统方法(例如支持向量机(SVM)和RFS)更准确地预测负面案例。[15]
在2020-AUG-1 BCDAIBETES开始支持开源(DIY)人工胰腺系统的内部装置(AID,也称为“自动胰岛素输送”辅助工具),并使用无管的Omnipod Dash-Dash-Dash-DASH-DASH-DEXCOM G6和iPhone&Android AID算法。这是带有手机运行Androidaps的设置的图片。尽管不是加拿大卫生批准的,但BCDIABETES认为当前版本的LOOP(Master Branch)是最佳入门级开源援助,可用于大多数具有良好家庭支持的成年人和儿童。Loop是一种保守算法,我们估计迄今为止,我们对全球35,000多名个人和1320 BCDiabetes客户的估计已安装。在BCDIABETES上,其各种口味中的环比零售辅助工具更优选,因为BC Pharmacare对Omnipod System&Dexcom G6/7的大多数给定覆盖范围更负担得起,并且仅部分覆盖零售援助组件。
证据概况:总体效果估计和研究参考文献。总结:基本证据的概述和简要回顾。证据的确定性:高:我们非常确定真实效果接近估计效果。中等:我们对估计效果有一定把握。真实效果可能接近这个效果,但有可能存在显著差异。低:我们对估计效果的信心有限。真实效果可能与估计效果存在显著差异。非常低:我们对估计效果的信心非常小。真实效果可能与估计效果存在显著差异。决策证据:有益和有害影响、证据质量和对人们偏好的考虑的简要描述。理由:描述上述要素如何相互加权并得出当前建议的方向和强度。实用信息:有关治疗的实用信息和任何特殊考虑的信息。改编:如果该建议改编自另一份指南,请在此处描述任何更改。讨论:如果您以用户身份登录,您可以在此处对具体建议发表评论。参考文献:建议的参考文献列表。
结果:本综述突出了跨研究的PBM参数的可变性,阻碍了对最佳协议的共识。需要对治疗参数的标准化和严格的临床试验来解锁PBM的全部治疗潜力。鉴定了87项临床试验,该试验研究了糖尿病中PBM(计划用PBM治疗的5,837例患者)。评估PBM对糖尿病神经病的影响的临床试验显示,疼痛减轻和潜在的生活质量改善。针对伤口愈合的研究表明,PBM增强了血管生成,纤维细胞增殖和胶原蛋白密度。PBM对糖尿病性视网膜病的影响仍然尚无定论,需要进一步研究。在血糖控制中,PBM对代谢参数(包括葡萄糖耐受性和胰岛素抵抗)表现出积极影响。
