通过纳米和微技术(量子点和微流体)的融合,我们创建了一个能够对人类血清样本中的传染性病原体进行多重、高通量分析的诊断系统。作为概念验证,我们展示了能够检测全球最流行的血液传播传染病(即乙型肝炎、丙型肝炎和 HIV)血清生物标志物的能力,样本量少(<100 µ L),速度快(<1 小时),灵敏度比目前可用的 FDA 批准方法高 50 倍。我们进一步展示了同时检测血清中多种生物标志物的精确度,交叉反应性最小。该设备可以进一步发展成为便携式手持式即时诊断系统,这将代表发达国家和发展中国家在检测、监测、治疗和预防传染病传播方面的重大进步。
这项研究介绍了一个先进的预测分析框架,用于早期发现糖尿病风险,旨在通过整合复杂的机器学习算法来增强主动的健康监测。该模型经过精心训练,以各种患者的健康指标,包括人口统计和临床变量,例如年龄,体重指数,血压和葡萄糖水平。通过确定数据中的微妙模式和相关性,该模型促进了对患有糖尿病高风险的个体的早期识别。这种早期检测能力可以及时进行临床干预,有可能减轻疾病的进展并优化患者管理策略。该研究强调了该模型的鲁棒性和可扩展性,突出了其在临床环境中部署的重要潜力,这是预防医疗基础设施的关键组成部分。
摘要:基于机器学习的糖尿病预测模型已在医疗保健中引起了人们的重大关注,作为糖尿病早期检测和管理的潜在工具。但是,这些模型的成功实施在很大程度上取决于医疗保健专业人员的参与。本摘要探讨了医疗保健专业人员在实施基于机器学习的糖尿病预测模型中的作用。医疗保健专业人员通过与数据科学家和机器学习专家合作,在这些模型的开发和实施中起着至关重要的作用。他们的临床专业知识和领域知识有助于确定相关的数据源和模型开发变量。他们还确保数据质量和完整性,在整个过程中解决道德方面的考虑。在实施阶段,医疗保健专业人员负责数据收集和预处理,包括从电子健康记录和可穿戴设备中收集患者数据。他们在清洁和组织模型输入数据时确保数据隐私和安全性。医疗保健专业人员评估和验证模型的性能和准确性,评估局限性和潜在偏见。集成到临床工作流程中是医疗保健专业人员的另一个关键责任。他们与IT部门合作,无缝整合
统计(DRG统计),该统计是由德国联邦统计办公室收集的,用于医院服务的成本帐户[15]。DRG统计数据包含有关患者的年龄,性别和居住地的形成,以及有关GER的所有大约1900万个医院病例的疾病和手术的信息。由于DRG统计数据不包含有关收入和教育的信息,因此德国社会经济剥夺指数(GISD版本2022 V 0。2)[16]用于社会经济差异。该指数包括所有地区(称为克雷斯)的教育,就业和收入状况的信息,并将其分为奎因瓷砖,范围从低到高社会经济剥夺[17]。五分位数1反映了社会经济贫困较低的地区,五分位数2至4中等贫困的地区和五分位数5个地区的社会经济贫困较高的地区。GISD通过患者的居住区与医院统计数据相关。
葡萄糖耐受性受损(IGT)是血糖水平高于正常范围但低于糖尿病诊断阈值的疾病。用作术语“糖尿病前期”,“非糖尿病高血糖”和“中间高血糖”。IGT的重要性是三个方面:首先,这表明将来患有2型糖尿病的风险更高;其次,IGT表明已经增加了心血管疾病的风险(CVD);第三,其检测为可以预防2型糖尿病的干预措施打开了大门。从IGT到2型糖尿病的进展与葡萄糖水平(通过高血糖的程度衡量)以及年龄和体重等危险因素有关。
纳米生物传感器和生物分析应用小组(NanoB2A)、加泰罗尼亚纳米科学与纳米技术研究所(ICN2)、CSIC、BIST 和 CIBER-BBN,贝拉特拉,08193,巴塞罗那,西班牙。电子邮件:maria.soler@icn2.cat b 大分子结构系,国立生物技术中心,高级科学研究委员会(CNB-CSIC),Darwin 3,Campus Cantoblanco UAM,28049 Madrid,西班牙 c 微生物生物技术系,国立生物技术中心,高级科学研究委员会(CNB-CSIC),Darwin 3,Campus Cantoblanco UAM,28049 Madrid,西班牙 d 综合系统生物学研究所(I2SysBio),瓦伦西亚大学-CSIC,46980,瓦伦西亚,西班牙 e 国家传染病研究所“L. Spallanzani”IRCCS,Via Portuense 292,00149,罗马,意大利 † 当前隶属关系:圣卡米勒国际健康科学大学,意大利罗马 Sant'Alessandro 大街 8 号,00131; IRCCS Sacro Cuore Don Calabria 医院,地址:via Don A. Sempreboni 5, 37024, Negrar di Valpolicella(维罗纳),意大利。
1型糖尿病(T1DM)是影响儿童和青少年的重要慢性,全身和代谢疾病。T1DM的发病率显示出全球儿童的趋势越来越高。此外,不同人群之间报告的T1DM发病率的发生率差异很大。这些变化是通过种族,地理区和工业改善水平的差异来解释的。1-7儿童中T1DM的发病率更高,但T1DM的发作可以在任何年龄发生。8儿童发作的T1DM的全球流行病学已很好地定义了,估计在国际糖尿病联合会(IDF)糖尿病中进行了双人估计。9在系统的综述中,作者报道了年轻人(> 15岁)的T1D发病率的流行病学与儿童发作T1D(<15岁)相比。7
简介................................................................................................................................................. 4