51 哈里伯顿公司 739 -24% 52 京瓷株式会社 717 -12% 53 英飞凌科技股份公司 716 7% 54 腾讯控股有限公司 702 -11% 55 惠普公司 691 -50% 56 意法半导体 689 17% 57 铠侠控股株式会社 687 10% 58 T-MOBILE / 德国电信股份公司 680 7% 59 西部数据公司 674 -8% 60 SNAP 公司 658 51% 61 诺基亚公司 651 -6% 61 荷兰皇家飞利浦公司 651 -21% 63 SALESFORCE.COM, INC. 646 1% 64 美国银行公司 644 6% 65 康普公司 638 2% 66 兄弟工业株式会社 637 -3% 67 百度公司 626 1% 68 TDK 株式会社 604 -4% 69 理光公司576 -15% 70 ADEIA INC. 554 27% 71 东京电子有限公司 551 -2% 72 美国电话电报公司 547 -35% 73 加州大学 546 -4% 74 康宁公司 544 13% 75 威瑞森通信公司 540 -2% 76 富国银行 537 32% 77 联想集团有限公司 530 -16% 78 康卡斯特公司 529 28% 79 保时捷汽车控股 SE 521 -20% 79 日本显示器公司 521 35% 79 富士通有限公司 521 -20% 82史赛克公司 520 15% 83 SAP SE 519 -21% 84 OPPO 移动通信 516 -32% 85 TCL 集团 515 -54% 86 空中客车公司 512 -3% 87 贝克顿·迪金森公司 511 22% 88 先进微设备公司 508 9% 89 惠普企业 503 -3% 90 赛峰公司 502 -10% 90 三星电机 502 10% 92 卡特彼勒公司 500 4% 93 夏普公司 498 -24% 94 迪尔公司 497 9% 95 英伟达公司 494 77% 96 波士顿科学公司 491 -1% 97 宝洁公司 489 13% 98 Adobe Inc. 481 15% 99 半导体能源实验室 475 16% 100 耐克公司 464 20%
气候系统包括多种互动组件,例如大气,生物圈,水圈,冰冻圈和地质。这些成分在从几天,季节和数年到数千年到具有复杂反馈机制的多个时间尺度相互作用。尤其是,研究水文周期很重要,因为气候变化对水周期预算的影响很大,例如降水,土壤水分,表面和地下表面径流以及蒸散量(Bouraoui等人 2004; Imbach等。 2012;艾伦等。 2020)。 回报,水文循环通过将水蒸气转移到大气中影响气候系统。 关于土壤水分的,还可以通过将总降水作为输入,径流和总反应作为输出来检查水文周期(Peng等人。 2019; Pereira等。 2020)。 此外,水文循环与表面能平衡之间存在直接联系,并最终与表面气候之间存在直接联系,因为太阳辐射通过裸露的土壤和植被的蒸发从地球表面到大气的垂直转移到大气中(Siler等人。2004; Imbach等。2012;艾伦等。2020)。回报,水文循环通过将水蒸气转移到大气中影响气候系统。,还可以通过将总降水作为输入,径流和总反应作为输出来检查水文周期(Peng等人。2019; Pereira等。2020)。此外,水文循环与表面能平衡之间存在直接联系,并最终与表面气候之间存在直接联系,因为太阳辐射通过裸露的土壤和植被的蒸发从地球表面到大气的垂直转移到大气中(Siler等人。2018)。由于土地表面条件在区域表面气候建模时的重要性;几项研究讨论了各种土地表面模型版本之间的比较。在重现平均空气温度和总表面降水方面,社区土地模型3.5版(CLM3.5; Oleson等人(2017)。2008)优于生物圈 - 大气转移系统(BAT; Dickinson等人。1993)如Steiner等人报道。 (2009),Wang等。 (2015)和Maurya等。 此外,当涉及建模平均空气温度和总降水时,社区土地模型4.5版(CLM4.5; Oleson等人 2013)的表现比蝙蝠方案更好(Maurya等人 2017; Chung等。 2018)。 土壤水分在控制气候系统中起着重要作用,尤其是在半干旱和干旱地区,占全球40%的地区(Reynolds等人 2007)。 对控制土壤水分变异性的因素至关重要(Srivastava等人。 2021a)。 此外,土壤水分源自生理和生物地球化学过程,例如植物蒸腾和光合作用(Seneviratne等人。 2010; Lemoine&Budny 2022)。 的陆地膨胀面(或区域气候模型; RCMS)被认为是研究表面气候/陆地碳浮动对土壤水分变化的反应的重要工具。 例如,Lei等人。 (2014)使用了社区土地模型1993)如Steiner等人报道。(2009),Wang等。 (2015)和Maurya等。 此外,当涉及建模平均空气温度和总降水时,社区土地模型4.5版(CLM4.5; Oleson等人 2013)的表现比蝙蝠方案更好(Maurya等人 2017; Chung等。 2018)。 土壤水分在控制气候系统中起着重要作用,尤其是在半干旱和干旱地区,占全球40%的地区(Reynolds等人 2007)。 对控制土壤水分变异性的因素至关重要(Srivastava等人。 2021a)。 此外,土壤水分源自生理和生物地球化学过程,例如植物蒸腾和光合作用(Seneviratne等人。 2010; Lemoine&Budny 2022)。 的陆地膨胀面(或区域气候模型; RCMS)被认为是研究表面气候/陆地碳浮动对土壤水分变化的反应的重要工具。 例如,Lei等人。 (2014)使用了社区土地模型(2009),Wang等。(2015)和Maurya等。此外,当涉及建模平均空气温度和总降水时,社区土地模型4.5版(CLM4.5; Oleson等人2013)的表现比蝙蝠方案更好(Maurya等人2017; Chung等。2018)。土壤水分在控制气候系统中起着重要作用,尤其是在半干旱和干旱地区,占全球40%的地区(Reynolds等人2007)。 对控制土壤水分变异性的因素至关重要(Srivastava等人。 2021a)。 此外,土壤水分源自生理和生物地球化学过程,例如植物蒸腾和光合作用(Seneviratne等人。 2010; Lemoine&Budny 2022)。 的陆地膨胀面(或区域气候模型; RCMS)被认为是研究表面气候/陆地碳浮动对土壤水分变化的反应的重要工具。 例如,Lei等人。 (2014)使用了社区土地模型2007)。对控制土壤水分变异性的因素至关重要(Srivastava等人。2021a)。此外,土壤水分源自生理和生物地球化学过程,例如植物蒸腾和光合作用(Seneviratne等人。2010; Lemoine&Budny 2022)。的陆地膨胀面(或区域气候模型; RCMS)被认为是研究表面气候/陆地碳浮动对土壤水分变化的反应的重要工具。例如,Lei等人。(2014)使用了社区土地模型
例如人工智能 (AI)、大数据分析、机器学习和区块链对管理和组织系统和实践的影响 (Tan and Taeihagh, 2021 ; Dickinson et al., 2021 ; Leiman, 2021 ; Radu, 2021 ; Taeihagh, 2021 ; Ulnicane et al., 2021 )。这些技术正在彻底改变现有的行政系统和实践,使其成为人与机器之间新型的互动,有时被称为算法官僚主义 (Vogl et al., 2020 ; Tan and Crompvoets, 2022 )。然而,由于组织内部和外部感知到的技术、系统、行政和监管障碍导致各种价值观保留,公共部门组织采用新的数字技术面临挑战(Tan 等人,2022 年;Bullock 等人,2020 年;Vogl 等人,2020 年;Tangi 等人,2021 年,Sun 和 Medaglia,2019 年)。公共管理研究已开始调查与系统应用人工智能和算法决策相关的挑战(Exmeyer 和 Hall,2022 年;Neumann 等人,2022 年)、问责机制(Busuioc,2021 年)、公民信任和决策的可解释性(Grimmelikhuijsen,2022 年)、组织重组(Meijer 等人,2021 年)、行政自由裁量权和实施意愿(Alshallaqi,2022 年;Wang 等人,2022 年)、道德原则和公民隐私(Willems 等人,2022 年)、能力差距和知识管理(Wilson 和 Broomfield,2022 年)。然而,这些新兴文献提供了如何在公共政策过程中整合人工智能和算法决策的零散图景。两种理论模型评估公共政策过程中的技术采用:行为模型通过分析用户对技术的感知和用户级特征的中介影响来解释技术采用过程,结构模型通过组织和机构因素与用户行为的相互作用来解释技术采用过程。这两种模型都侧重于用户的感知,但并没有提供整体视角来解释不同机构、组织、技术和个人层面驱动因素之间的感知关系及其对系统应用的影响(Dawes,2009;Engvall 和 Flak,2022)。这使得为公共政策过程中的人工智能和算法决策制定可行的数字化转型战略变得复杂。我们的具体研究问题是:本文旨在通过开发一个整体模型 1 来解决文献中的这一空白,该模型可以解释影响人工智能和算法工具在公共政策过程中整合的感知驱动因素之间的相互关系。具体来说,本研究重点关注税收和社会保障领域的欺诈检测案例,这些领域是使用机器学习和人工智能驱动的高级分析技术的主要政策领域。虽然这些技术有可能改进欺诈检测流程,但采购障碍、培训不足的工人、数据限制、缺乏技术标准、组织变革的文化障碍以及遵守负责任的人工智能原则的需要阻碍了它们的广泛采用 (West, 2021 )。
1。Wisner ER,Dickinson PJ,Higgins RJ。磁共振成像的特征是犬内肿瘤的特征。vet radiol超声。2011; 52:S52-S61。2。José-LópezR,Gutierrez-Quintana R,Fuente C等。伴有神经胶质瘤的狗的临床特征,诊断和生存分析。J VET Intern Med。2021; 35:1902-1917。3。Young BD,Levine JM,Porter BF等。狗内星形胶质细胞瘤和少突胶质瘤的磁共振成像特征。vet radiol超声。2011; 52:132-141。4。Bentley RT,Ober CP,Anderson KL等。犬颅内神经胶质瘤:磁共振成像标准与肿瘤类型和等级之间的关系。兽医J。 2013; 198:463-471。 5。 Koehler JW,Miller AD,Miller CR等。 修订了犬神经瘤的诊断性临床化:旨在验证犬神经胶质瘤患者是人神经胶质瘤的天然临床前模型。 J Neuropathol Exp Neurol。 2018; 77:1039-1054。 6。 Kraft SL,Gavin PR,Dehaan C,Moore M,Wendling LR,Leathers CW。 回顾性评论通过磁共振成像评估的50种犬颅内肿瘤。 J VET Intern Med。 1997; 11:218-225。 7。 Bentley RT。 磁性共振成像对狗的脑肿瘤的诊断。 兽医J。 2015; 205:204-216。 8。 Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。 前兽医Sci。兽医J。2013; 198:463-471。 5。 Koehler JW,Miller AD,Miller CR等。 修订了犬神经瘤的诊断性临床化:旨在验证犬神经胶质瘤患者是人神经胶质瘤的天然临床前模型。 J Neuropathol Exp Neurol。 2018; 77:1039-1054。 6。 Kraft SL,Gavin PR,Dehaan C,Moore M,Wendling LR,Leathers CW。 回顾性评论通过磁共振成像评估的50种犬颅内肿瘤。 J VET Intern Med。 1997; 11:218-225。 7。 Bentley RT。 磁性共振成像对狗的脑肿瘤的诊断。 兽医J。 2015; 205:204-216。 8。 Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。 前兽医Sci。2013; 198:463-471。5。Koehler JW,Miller AD,Miller CR等。修订了犬神经瘤的诊断性临床化:旨在验证犬神经胶质瘤患者是人神经胶质瘤的天然临床前模型。J Neuropathol Exp Neurol。2018; 77:1039-1054。 6。 Kraft SL,Gavin PR,Dehaan C,Moore M,Wendling LR,Leathers CW。 回顾性评论通过磁共振成像评估的50种犬颅内肿瘤。 J VET Intern Med。 1997; 11:218-225。 7。 Bentley RT。 磁性共振成像对狗的脑肿瘤的诊断。 兽医J。 2015; 205:204-216。 8。 Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。 前兽医Sci。2018; 77:1039-1054。6。Kraft SL,Gavin PR,Dehaan C,Moore M,Wendling LR,Leathers CW。 回顾性评论通过磁共振成像评估的50种犬颅内肿瘤。 J VET Intern Med。 1997; 11:218-225。 7。 Bentley RT。 磁性共振成像对狗的脑肿瘤的诊断。 兽医J。 2015; 205:204-216。 8。 Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。 前兽医Sci。Kraft SL,Gavin PR,Dehaan C,Moore M,Wendling LR,Leathers CW。回顾性评论通过磁共振成像评估的50种犬颅内肿瘤。J VET Intern Med。1997; 11:218-225。7。Bentley RT。 磁性共振成像对狗的脑肿瘤的诊断。 兽医J。 2015; 205:204-216。 8。 Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。 前兽医Sci。Bentley RT。磁性共振成像对狗的脑肿瘤的诊断。兽医J。 2015; 205:204-216。 8。 Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。 前兽医Sci。兽医J。2015; 205:204-216。 8。 Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。 前兽医Sci。2015; 205:204-216。8。Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。前兽医Sci。计算机断层扫描和磁共振成像在男性调查方面是等效的,并且类似地在犬颅内神经胶质瘤的等级和类型可预测性方面不准确。2017; 4:157。 9。 Larroza A,BodíV,MoratalD。磁共振成像中的纹理分析:对未来应用的审查和考虑。 in:Contantinides c(ed):使用直接和衍生的MRI方法评估细胞和器官功能以及dys功能。 互联网:伦敦:Intechopen,2016年。 10。 van Timmeren JE,Cester D,Tanadini-Lang S,Alkadhi H,BaesslerB。 见解成像。 2020; 11:91。 11。 Castellano G,Bonilha L,Li LM,CendesF。医学图像的纹理分析。 Clin radiol。 2004; 59:1061-1069。 12。 Rizzo S,Botta F,Raimondi S等。 放射线学:图像分析的事实和挑战。 EUR RADIOL EXP。 2018; 2:36。 13。 Sanduleanu S,Woodruff HC,De Jong Eec等。 与放射线学跟踪肿瘤生物学:使用放射线质量评分的系统评价。 Radiother Oncol。 2018; 127:349-360。2017; 4:157。9。Larroza A,BodíV,MoratalD。磁共振成像中的纹理分析:对未来应用的审查和考虑。in:Contantinides c(ed):使用直接和衍生的MRI方法评估细胞和器官功能以及dys功能。互联网:伦敦:Intechopen,2016年。10。van Timmeren JE,Cester D,Tanadini-Lang S,Alkadhi H,BaesslerB。见解成像。2020; 11:91。11。Castellano G,Bonilha L,Li LM,CendesF。医学图像的纹理分析。Clin radiol。 2004; 59:1061-1069。 12。 Rizzo S,Botta F,Raimondi S等。 放射线学:图像分析的事实和挑战。 EUR RADIOL EXP。 2018; 2:36。 13。 Sanduleanu S,Woodruff HC,De Jong Eec等。 与放射线学跟踪肿瘤生物学:使用放射线质量评分的系统评价。 Radiother Oncol。 2018; 127:349-360。Clin radiol。2004; 59:1061-1069。 12。 Rizzo S,Botta F,Raimondi S等。 放射线学:图像分析的事实和挑战。 EUR RADIOL EXP。 2018; 2:36。 13。 Sanduleanu S,Woodruff HC,De Jong Eec等。 与放射线学跟踪肿瘤生物学:使用放射线质量评分的系统评价。 Radiother Oncol。 2018; 127:349-360。2004; 59:1061-1069。12。Rizzo S,Botta F,Raimondi S等。放射线学:图像分析的事实和挑战。EUR RADIOL EXP。 2018; 2:36。 13。 Sanduleanu S,Woodruff HC,De Jong Eec等。 与放射线学跟踪肿瘤生物学:使用放射线质量评分的系统评价。 Radiother Oncol。 2018; 127:349-360。EUR RADIOL EXP。2018; 2:36。 13。 Sanduleanu S,Woodruff HC,De Jong Eec等。 与放射线学跟踪肿瘤生物学:使用放射线质量评分的系统评价。 Radiother Oncol。 2018; 127:349-360。2018; 2:36。13。Sanduleanu S,Woodruff HC,De Jong Eec等。与放射线学跟踪肿瘤生物学:使用放射线质量评分的系统评价。Radiother Oncol。2018; 127:349-360。
(R) * PrD 街道名称后缀 PoD 新 ADC 网格 税图编号 位置 RT # 1st Corp 小巷 47 Courthouse Village 24th STREET 6846-C1 37 pvtrd off Tidewater Trail AARON ~ ~ ~ ~ ~ ~ 参见 Arend * ABBERLY VILLAGE LANE 6844-J2 35 Abberly Village / Southpoint ABBEY LANE 6720-C9 22K Windsor Place 1384 * S ABBIE MOORE COURT 6719-E8 21M Thorburn Estates Section 2 * N ABBIE MOORE COURT 6719-E8 21M Thorburn Estates Section 2 * ABBOTSWELL PLACE 6845-B7 36H Briarhaven Phase 1 ABERDEEN COURT 6845-H1 37 Lee's Crossing 2242 (R) * ABES COURT 18C Fawn Lake ABINGDON COURT 6720-E7 23Q Salem Run 1465 ABNER COURT 6719-G4 21C Grantwood Acres ~ 原为 Dickinson ACADEMY DRIVE 6721-A10 24 Fredericksburg Academy Complex ACCOKEEK LANE 6968-A5 62A Indian Acres ~ 第 9 区 * ACCORD COURT 6721-D7 24J Lafayette Crossing ACOMA LANE 6968-B8 62A Indian Acres ~ 第 18 区 ACORN LANE 6717-D1 8A Forest Walk ACREE AVENUE 6720-E6 23Q Salem Run Apartments (R) * ACTON DRIVE 19B Whitehall * ADAMS LANE 6718-C2 10B WCR 总统小屋区 ADAMSON LANE 7090-A3 75 Adamson Tract ADAMSON LANE ~ ~ ~ ~ ~ ~ Heritage Hills ~ 已更名 Argall (R) * ADARSH COURT Thornburg Commons (R) * ADARSH LANE Thornburg Commons ADENA LANE 6968-B6 62A Indian Acres ~ 第 5 区 ADIOS COURT 6719-J9 22T Salem Fields ~ Brookfield 2123 (R) * AFFINITY Lee Garrison * AFTON DRIVE 6843-D9 47F Afton at Keswick * AFTON GROVE COURT 6721-D10 24M AFTON AGECROFT ROAD 7089-C1 74 Lexington AGNES LANE 6843-K4 34C Bloomsbury 农场庄园 2151 AHNAKI LANE 6968-A7 62A 印第安英亩 ~ 第 13 区 AIRDRIE LANE 6845-C4 36F Lees Hill ~ Turnberry East AKEE LANE E 6968-B6 62A 印第安英亩 ~ 第 5 区 AKEE LANE W 6968-B6 62A 印第安英亩 ~ 第 5 区 ALACHUA LANE 6968-B7 62A 印第安英亩 ~ 第 5 区 ALBANY STREET 6720-A6 22A 林业 1175 ALBERTA DRIVE 6845-F6 36G Timberlake 1693 ALBERTA DRIVE N 6845-F6 36G Timberlake 1693 ALBIN COURT 6720-E6 23Q Salem Run 联排别墅(R) * ALBURY DRIVE 19B Whitehall ALCOMA LANE 6968-C8 62A Indian Acres ALDRICH COURT 6843-H8 48C Courthouse Commons 1488 ALEUT LANE 6968-B8 62A Indian Acres ~ 第 17 区 ALEXANDER TRAIL 6718-F1 10B WCR Glen 3 * ALEXANDERS CROSSING WAY 6845-A6 50 Alexanders Crossing * ALEXANDRIA CIRCLE ~ ~ ~ ~ ~ ~ Lees Hill ~ 已更名为 Chris Shan ALEXANDRIA STREET 6721-B7 24B Roseland 1212 * ALEXIS FORK 6719-A7 21 The Woods of Catharpin 2312 ALGONQUIN DRIVE 6968-B6 62A Indian Acres ~ 第2 ALICIA COURT 6720-D6 23N Sheraton Oaks 1468 * ALLEGHANY WAY 6844-H4 35M Lees Parke ~ Pod B,第 2B 区 * ALLENDALE COURT 18C Fawn Lake,第 25 区 * ALLERTOW ROAD 6844-K2 35 Oxford Apartments at Southpoint Landing * ALLIANCE COURT 6721-C7 24J Lafayette Crossing * ALLIANCE WAY 6721-C7 24J Lafayette Crossing 1547 ALLIE COURT 6846-C1 25E Hamiltons Crossing 2212
• 设计位于内利根的克莱德河上更换大桥。Long Bai,Stantec Australia。• 掌握铁路接口管理:面向澳大利亚资产所有者的深入指南。David Bailey,Sterling Infrastructure • 开发用于大跨度桥梁的创新型超高性能预应力混凝土 U 型梁 - 案例研究,Arash Behnia,Robert Bird Group • Doolan 桥面加固和长寿修复工程 - 如何以仅为新桥成本的一小部分延长使用寿命。Patrick Bigg,木材修复服务。• 河路桥 - 设计与施工 - 轻型净跨更换解决方案,经久耐用。Patrick Bigg,木材修复服务。• 昆士兰州道路资产检查的临时交通管理变化。Rebecca Blair,Osborn Consulting。• 采矿沉降影响后 Redbank Creek 涵洞的修复。Peter Boesch,Stantec Australia。 • 一种对现有混凝土涵洞和木桥结构进行荷载等级评估的方法。Awais Jamil Chaudry,Stantec。• 塔斯马尼亚多座桥梁修复的再碱化技术。Atef Cheaitani,修复技术,悉尼,新南威尔士州• 案例研究:钢筋混凝土桥梁 17 年的防腐。Atef Cheaitani,修复技术。• 霍华德街大桥改造——小桥回收利用的案例研究。Nicholas Critchley,海洋与土木维护。• 把握更大图景——确定铁路资产管理需求的合作案例。Juan Diaz-Cuevas,AECOM。• 严重腐蚀的混凝土桥梁下部结构的可持续修复和保护。Andrew Dickinson,Vector Corrosion Technologies。• 微型桩在桥梁建设中发挥作用吗?Christopher Dowding,Osborn Consulting。 • 桥梁和涵洞结构修复的新型 FRP 解决方案,Mo Ehsani,QuakeWrap,美国。• 铁路涵洞更新 - 在受限通道窗口内取得成功的设计和施工方法。Stephen Farrington,Sterling • 在铁路下方安装 Neerim 路平交道口服务梁以方便公用设施切换。Daniel Fedele,Beca。• 桥梁设计建模与碰撞/冲击建模的比较。Dane Hansen,IF3 澳大利亚 • 2 级桥梁检查:地方政府的后续步骤。Tim Heldt,Osborn Consulting。• 为 Rozelle 立交项目拆除 Beatrice Bush 大桥。Matt Hennessy,EIC Activities。• 澳大利亚木桥设计规范的演变。Clay Hoger,木材研究与开发。• 全面测试以确定胶合木桥的荷载分担系数。Clay Hoger,木材研究与开发。 • 使用 3D 现实模型、检查软件和 AI 来管理桥梁基础设施。Liam Holloway 博士,Duratec 澳大利亚 • 在悉尼郊区公共设施上修建桥梁 - 流程和挑战。Eric Hooimeyer,Teleo Design。• 弗兰克斯顿-丹德农路桥升级。David Huggett,SMEC 澳大利亚 • 位于新南威尔士州贝加谷郡的 Cuttagee 桥状况和荷载等级评估,Muhammad Abdullah Jamal,STANTEC。• 基于可靠性方法的桥梁管理增强可持续性。Sachidanand Joshi,UBMS 研究小组。印度。• 儿童桥。Nicholas Keage,AECOM。• 小型桁架桥的分析与设计。Jeandré le Roux,Tiaki 工程顾问公司。新西兰。• 老旧铁路桥梁上部结构更换设计:复合桥面案例研究,Mehdi Lima,Sterling Infrastructure • Loganlea 路立交桥混凝土桥面修复与更换,包括可持续性举措。 Evan Lo,昆士兰州交通和主要道路部。• Dibble Avenue 水坑边坡加固 – 密集城市环境中的旧砖坑修复。Paul Lunniss,内西区议会。
引言黄曲霉毒素是黄曲霉的代谢产物,它是动物和人类中有效的肝毒素和致癌物。霉菌毒素可以直接通过脂质的代谢而直接干扰胸腺中细胞毒性和辅助T淋巴细胞的产生。T辅助淋巴细胞(CD4+)是负责转向自适应免疫系统反应的细胞。这些细胞存在于周围循环中,然后在存在挑战的情况下迁移到次级淋巴组织中。粘膜T辅助淋巴细胞是在这些位置存在的细胞,这些细胞作用于抗体的产生或防御挑战。黄曲霉毒素中毒是免疫抑制的原因,其作用会影响疫苗免疫反应。行业用于保护动物免受AF的毒性作用的措施包括评估谷物的使用,使用真菌生长的抑制剂,发酵,微生物灭活,物理分离,热灭活,辐射,使用氨,氨水降解以及使用。目前,最吉祥和实用的方法之一是使用吸附剂。选择的吸附剂被添加到被AF污染的饮食中时,可以在消化过程中劫持黄曲霉毒素,从而使霉菌毒素通过动物的胃肠道经过Milbond-TX®是一种商业可用的霉菌毒素binder,用于减少黄曲霉毒素的影响。这项研究的目的是评估肉鸡中疫苗免疫反应中MilbondTX®的影响。使用FlowJo软件(Treestar,Inc)分析数据。材料和方法90个具有相同起源的雄性肉鸡在1天后用纽卡斯尔病毒(Poulvac®NDW)接种疫苗,并分为3种30只鸟的治疗方法。治疗差异是给予不同组的饲料的类型。处理由阴性对照(T1),仅常规肉鸡饲料,阳性对照(T2)组成,以及在常规饲料中包括2.8 ppm的Aflatoxin和Milbond组(T3)(T3),其中包括Aflatoxin(2.8 ppm)和Milbond,为0.25%。动物将动物保存在笼子里,每只10只鸟(每次治疗3次重复)。在疫苗接种后3、7和21天收集血液样本。样品。是用于量化T辅助淋巴细胞(CD4+),粘膜T辅助淋巴细胞和记忆或幼稚T淋巴细胞的T型助手淋巴细胞(CD4+)的存在。此程序目前是研究动物免疫系统的既定方法。流式细胞仪是在Facscalibur流式细胞仪(Becton Dickinson)上进行的。绿色荧光(来自FITC),并在FL2通道(585/42 nm)上检测到橙色荧光。细胞(基于前进和侧面散射,包括污染的血小板。统计分析是针对每种细胞的统计分析,以及通过固定处理和样品随机处理的广义线性混合模型(泊松分布和对数链路)的统计分析。结果和结论流式细胞仪技术允许表征免疫学状态,从而评估某些疫苗的作用机理。因此,可以以极大的敏感性检测到对免疫系统的小干扰,从而预测免疫系统如何能够安装面向疫苗接种的反应。通过流式细胞术,映射3个不同细胞亚群(T辅助淋巴细胞(CD4+),粘膜T辅助淋巴细胞和记忆或幼稚的T淋巴细胞)评估的免疫反应,表明MILBONDTX®FED组和阴性对照组具有明显更大的蜂窝免疫反应。与对照组相比,黄曲霉毒素组中所有评估的细胞亚群均降低,而MilbondTX®有助于数值减少这种有害作用(结果未显示)。在饲料中添加MilbondTX®导致淋巴细胞的数量增加,在未挑战的对照组中观察到的水平相似,而仅受到挑战的组导致淋巴细胞计数减少(下图)。霉菌毒素的存在改变了在本实验中测试的鸟类免疫系统的正常发育。使用添加剂抗霉菌毒素MilbondTX®能够逆转霉菌毒素对疫苗反应的影响。我们得出的结论是,MilbondTX®在喂食黄曲霉毒素阳性饲料时有助于保护免疫反应,这可能有助于在纽卡斯尔疾病疫苗接种后更好地适应免疫反应。
3. Lourenço TGB、Heller D、Silva-Boghossian CM、Cotton SL、Paster BJ、Colombo APV 等。牙周健康和患病患者的微生物特征谱。临床牙周病学杂志。2014;41(11):1027-36。4. Arora N、Mishra A、Chugh S。微生物在牙周炎中的作用:我们到达顶峰了吗?除了红色复合体之外,还有一些未被发现的细菌。印度牙周病学会杂志。2014;18(1):9-13。5. Belibasakis GN、Belstrøm D、Eick S、Gursoy UK、Johansson A、Könönen E 等。牙周微生物学和牙周病的微生物病因:历史概念和当代观点。牙周病学 2000。 2023;第 1-17 页。6. Socransky SS、Haffajee AD。牙周微生物生态学。牙周病学。2000;38(1):135-87。7. Mohanty R、Asopa S、Joseph M、Singh B、Rajguru J、Saidath K 等人。红色复合体:口腔菌群中的多微生物聚集体:综述。家庭医学初级护理杂志。2019;8(11):3480-6。8. Shaikh HM、Patil S、Pangam T、Rathod K。多微生物协同作用和菌群失调:概述。印度牙周病学会杂志。2018;22(2):101-6。 9. Joshi V、Bhat K、Kugaji M、Ingalgi P。印度慢性牙周炎患者和牙周健康成人中伴放线杆菌的出现情况。印度牙周病学会杂志。2016;20(2):141-4。10. Holt SC、Kesavalu L、Walker S、Genco CA。牙龈卟啉单胞菌的毒力因子。牙周病学。1999;20:168-238。11. Slots J、Listgarten MA。牙龈拟杆菌、中间拟杆菌和伴放线杆菌与人类牙周病的关系。临床牙周病学杂志。1988;15(2):85-93。 12. Potempa J、Sroka A、Imamura T、Travis J。牙龈卟啉单胞菌的主要半胱氨酸蛋白酶和毒力因子:多域蛋白复合物的结构、功能和组装。Curr Protein Pept Sci。2003;4(6):397-407。13. Mayrand D、Grenier D。外膜囊泡的生物活性。Can J Microbiol。1989;35(6):607-13。14. Mihara J、Holt SC。从牙龈卟啉单胞菌W50中分离的成纤维细胞活化因子的纯化和表征。Infect Immun。1993;61(2):588-95。15. Mihara J、Yoneda T、Holt SC。牙龈卟啉单胞菌衍生的成纤维细胞活化因子在骨吸收中的作用。感染免疫。1993;61(8):3562-4。16. Onishi S、Honma K、Liang S、Stathopoulou P、Kinane D、Hajishengallis G 等人。Tannerella forsythia 亮氨酸富集重复蛋白 BspA 在牙龈上皮细胞中表达 Toll 样受体 2 介导的白细胞介素 8。感染免疫。2008;76(1):198-205。17. Armitage GC、Dickinson WR、Jenderseck RS、Levine SM、Chambers DW。龈下螺旋体百分比与牙周病严重程度的关系。牙周病学杂志。 1982;53(9):550–6。 18. Honma K、Inagaki S、Okuda K、Kuramitsu HK、Sharma A。连翘胞外多糖合成操纵子在生物膜发育中的作用。微生物病原体。 2007;42(4):156–66。 19. Socransky SS、Haffajee AD、Cugini MA、Smith C、Kent RL。龈下牙菌斑中的微生物复合体。临床牙周病学杂志。1998;25(2):134-44。20. Hajishengallis G. 牙周炎:从微生物免疫颠覆到全身炎症。自然免疫学评论。2015;15(1):30-44。21. Lamont RJ、Koo H、Hajishengallis G. 口腔微生物群:动态群落和宿主相互作用。自然微生物学评论。2009;16(12):745-59。22. Chakar C、Menassa G、Khayat R. 牙周微生物组第一部分:文献综述。国际阿拉伯牙科杂志。2021;12(1):41-7。23. Priyadharsini JV。通过计算机模拟验证非抗生素药物对乙酰氨基酚和布洛芬作为抗红色复合病原体的抗菌剂。《牙周病学杂志》。2019;90(12):1441-8。24. Ushanthika T、Girija ASS、Paramasivam A、Priyadharsini JV。通过计算机模拟方法识别利血平靶向的红色复合病原体中的毒力因子。《天然产物研究》。2021;35(11):1893-8。25. Maheaswari R、Kshirsagar J、Lavanya N。聚合酶链反应:牙周病学的分子诊断工具。《印度社会科学杂志》
迁移流离失所惠特尼铝数分钟出租车特立尼达彩虹罗伯托感动观察观众责怪莱茵约翰偷窃封闭的国家增加免疫自由式wwe反对回合注射苔藓菲利克斯赫尔曼消耗致命场景位置dos静态。伍斯特iTunes穆罕默德温布尔登das超过温泉穆斯林假宣传半径供应商望远镜进步世仇范围弗格森酋长社会学弗莱明砂岩风暴莫妮卡横向下沉更难马车誓言起重机尖峰事故林吉特白天广泛子公司卡尔教授布雷迪准将恐慌造船厂规范台北精制先知选美奉献纳斯卡连续性雪松滑雪德雷克水下交付坐标受体反射杰弗里安德里亚听众修道院。牌匾结合偏见温斯顿纸浆碰撞马克卡牢固固定声明 at&t 地平线德黑兰向上隧道斗争形状库马尔清洁谈判 oz 接受西藏哈萨克斯坦成功贝克商店匹配@二进制米德兰兹贝德福德废弃特蕾西玻利维亚停止多彩半决赛加州大学洛杉矶分校红人新娘洪水发行随后农民排名过剩埋葬财政大气动机迷你学术麦克斯韦捷克斯洛伐克米奇托莱多反馈意识形态运作传奇。精确君士坦丁灰烬核探索游艇解决仙女集体动乱警报天文学少数民族种族灭绝人质加尔各答选择性半球神双边码头生态蜂蜜银行绝对烧毁吉隆坡现象