对病原体膜镜的耐受性似乎与叶子上的ospecic微生物分类群的发生有关。研究了一个基本鉴定在耐受树上的细菌分离株,研究了它们的分类学分类及其抑制灰烬死病原体的潜力。考试OOgri值揭示了一个单独的物种位置。基于直系同源和标记基因的系统基因分析表明,与物种achromo-clomo-clomo-abter aestuarii一起表明了一个单独的属位置。此外,分析的比率是核苷酸的同一性和基因组比对,表明基因组差异通常观察到或在此内观察到或类间比较。因此,这些研究被认为是新属中的单独物种,或者是schauerellaraxinea gen的单独物种。 11月,sp。nov。提出了类型的菌株B3P038 T(= LMG 33092 T = DSM 115926 T)。此外,重物占菌的物种,如schauerella aestuarii梳子。nov。提出了。在共培养测定中,菌株能够抑制oaH. raxineus菌株的生长。因此,一个官能分析O基因组OS。raxinea b3p038 t揭示了介导oantiungal物质的基因。这种潜力,结合了植物层灰灰树的普遍存在,使这一组变得有趣或接种实验,其目标是以整合方法来控制病原体。对于用途试验,开发了菌株特异性QPCR系统,以建立一种符合能力的方法或监测接种成功。
[13] 2020-21美国干旱的2020-21,AGU秋季会议,美国旧金山,2023年12月。(海报)[12]陆地大气相互作用和热带南美洲的干旱,在美国帕利塞德的Lamont-Doherty Earth天文台举行的OCP研讨会,2023年9月。(口腔)[11]对热带南美极端土壤条件的水文气象反应建模:方法和物理机制,Nanjing University的大气科学学院,Virtual,2023年3月。(邀请的谈话)[10]解开土地表面状况和内部大气变异性对美国干旱发展的贡献,AMS年度会议,虚拟,2023年1月。(海报)[9]对热带南美极端土壤条件的水文学反应建模:方法论和物理机制,AGU秋季会议,美国芝加哥,2022年12月。(海报)[8]一种新的土壤初始化方法,用于研究中季陆地 - 大气相互作用,CESM工作组,虚拟,2022年6月。(口腔)[7]在热带南美,UCAR土地模型和生物地球化学工作组的季风前季节对极端土壤状况的水文学反应建模,虚拟,2022年1月。(口服)[6]对热带南美最新干旱的生态流水学反应,AMS年度会议,虚拟,2022年1月。(口服)[5]模拟了气候对南美极端土壤条件的建模,美国新奥尔良,美国新奥尔良,2021年12月。(海报)[4]模拟了南美气候对森林砍伐的三十年的反应,美国康涅狄格大学的民用与环境工程系,美国斯特尔斯,2021年4月。(口服)[3]在热带南美洲最近干旱,AGU秋季会议,虚拟,2020年12月的生态杂种反应中的差异。(口服)[2]探索使用区域气候竞争模型,AMS年度会议,美国波士顿,2020年1月。(海报)[1]建模土地覆盖变化对南美地区气候的影响,使用耦合区域模型,AGU秋季会议,美国旧金山,2019年12月。(海报)病房
植物病害爆发代表着全球粮食安全和环境可持续性的重大挑战,导致初级生产力下降、生物多样性减少,以及全球严重的粮食/饲料短缺。合成杀菌剂的滥用已经对人类健康和生态系统造成了重大危害。某些人类疾病,如阿尔茨海默氏症和自闭症,在过去几十年中急剧上升,这一趋势部分归因于现代农业和园艺中杀菌剂的使用/过度使用。鉴于这些令人担忧的迹象,现在应该重新考虑植物病害管理策略了。使用某些有益微生物(称为生物防治剂)有望成为对抗植物病原体的环保方法。卵菌通常被视为植物界的坏人,通过晚疫病、猝倒病和枯萎病等破坏性疾病造成混乱,这可能会造成灾难性的后果,例如爱尔兰马铃薯饥荒。然而,并非所有卵菌都是有害的!有些菌是伪装的好家伙,显示出帮助我们对抗植物疾病的潜力,可以作为有效的生物防治剂。了解生物防治卵菌保护作用的潜在机制对于实现理想结果和制定创新策略至关重要。卵菌的生物防治机制可分为五类:i)菌寄生,ii)分泌溶解酶,iii)与病原体竞争营养和空间,iv)诱导系统抗性(ISR),v)产生注射细胞(枪细胞)。本综述阐明了卵菌采用的生物防治机制,强调了它们的潜在实际意义以及对植物生长的积极影响。本文还讨论了影响生物防治卵菌功效的土壤和环境因素,以及旨在提高其生物防治效率或扩大目标病原体范围的各种策略。尽管对生物防治卵菌的了解取得了进展,但由于受环境条件、土壤类型、接种物活力、竞争微生物的影响,其田间表现不一致,因此其商业应用面临挑战。通过开发稳定的配方、基因改造、合成生物学、结合多种菌株以及与其他农艺实践相结合来提高生物防治卵菌的功效,可以帮助克服这些挑战并促进其在可持续农业中的应用。进行全面的风险评估以避免非目标效应,并简化监管审批流程也至关重要。了解生物防治卵菌如何抵抗植物病原体将提高我们对有益和有害微生物之间相互作用的基本认识,增强我们预测受其影响的植物疾病发展动态的能力
len过敏性,这在城市中经常发现(Acar等人,2007年; Lacan和McBride,2009年; Chaparro和Terradas,2010年;卡拉特·阿尤德(Calat-Ayud andCariñanos),2024年)。在意大利,枫树被广泛偏爱城市绿化,并且在高山,Po Valley和Apennine地区的所有主要城市以及其他地中海地区都很常见(Bartoli等人(Bartoli等)(Bartoli等人),2021)。例如,在罗马,由于其较高的生根和碳固存能力和低臭氧的潜力,因此鼓励使用枫树。Acer Platanoides也具有抵抗风损伤和空气污染的重视,而A. pseudopla-tanus具有针对土壤污染物的植物稳定活性(Mirabile等人。,2015年)。枫树的健康越来越被隐型皮质瘤(Ellis&Everh。)P.H. 格雷格。 &S。Waller(Ellis and Everhart,1889; Gregory and Waller,1951年),这是一种被认为是欧洲非本地的病原体,是该疾病烟草树皮的因果因素。 Cryptostroma Corticale,如Ellis和Everhart(1889)首次描述为Coniosporium Corticale。 其在欧洲存在的第一份报道是在1945年,在英国伦敦的旺斯公园(Gregory and Waller,1951年)。 真菌被称为病原体和腐生(Dickenson,1980; Enderle等人 ,2020年),长期以来,内生阶段是近期假定的(Schlößer等人 ,2023)。 ,2020)。 ,2008年; Langer等。 ,2013年; Koukol等。 ,2014年)。 ,2016年)。P.H.格雷格。&S。Waller(Ellis and Everhart,1889; Gregory and Waller,1951年),这是一种被认为是欧洲非本地的病原体,是该疾病烟草树皮的因果因素。Cryptostroma Corticale,如Ellis和Everhart(1889)首次描述为Coniosporium Corticale。其在欧洲存在的第一份报道是在1945年,在英国伦敦的旺斯公园(Gregory and Waller,1951年)。真菌被称为病原体和腐生(Dickenson,1980; Enderle等人,2020年),长期以来,内生阶段是近期假定的(Schlößer等人,2023)。,2020)。,2008年; Langer等。,2013年; Koukol等。,2014年)。,2016年)。隐性皮质瘤是机会主义的,当宿主树遭受由高温和干旱等非生物因素引起的压力时会引起症状(Dickenson,1980; Enderle等人。关于1960年代和1980年代特别温暖而干燥的夏季时期,烟草树皮的报道定期出现(Gregory and Waller,1951; Moreau and Moreau,1951; 1951; Townrow,1953; Plate and Schnei-der,1965; Young,1978; Young,1978; 1978; Dickenson,1980; Abbey and Streetton,1985; Abbey and Stretton,1985年)。自2003年和2005年干旱年以来,欧洲C. corticale的报告有所增加(Cech,2004; Metzler,2006; Robeck等人。在意大利,唯一发表的C. corticale的报告是在2012年,当时在博洛尼亚的山顶上的山地上发现了一小块大坝的树木,聚集在一起的人(Oliveira Longa等人。在周围环境中生长的其他痤疮植物中没有观察到症状,并且迅速消除了疫情。烟熏树皮症状包括枯萎,射击死亡,绿色的黄色木材变色以及在宿主树皮下的水泡发育,并在水泡破裂后随后沉重的孢子形成(Gregory and Waller,1951年)。Young's(1978)实验证据(在