扩散概率模型(DDPM)[39,40],通过开发合适的3D表示,例如,体积网格[50],点云[3,53],三角形网格[24,32],隐式含量[24,32],隐式代表[12,28,36,36,36,36,56,36,56,36,36,36,56)。但是,这些生成模型的一个共同主题是匹配由训练数据定义的经验分布以及从潜在空间的先前分布中得出的诱导分布。这些方法在3D域中对下游应用程序至关重要的3D域中没有明确模型。考虑使用隐式形状代表的许多状态形状发生器。合成形状通常具有断开的作品,并具有其他物理稳定性和几何可行性的问题。现有技术的一个主要问题是,他们只看到培训实例,这是一组非常稀疏的样本。但是,它们没有对合成实例的几何和物理特性进行建模。这种问题不容易通过开发合适的神经代表来解决。随着人造形状具有多种拓扑结构,在可以对不同拓扑结构建模的代表下执行这些属性,例如隐式表面和点云仍然非常具有挑战性。在本文中,我们介绍了一种名为GPLD3D的新颖方法,该方法极大地增强了合成形状的几何学性和物理稳定性。考虑一个预先训练的生成模型,该模型将潜在空间映射到形状空间。我们将潜在扩散范式[12,34,36,56]证明是一种最先进的形状基因产生模型。与训练一个扩散模型不同,该模型将潜在空间的高斯分布映射到由训练形状的潜在代码定义的经验分布,我们介绍了一个潜在代码的优质检查器,以定义潜在空间的连续正规化分布。此质量检查器集成了一个学到的功能,该功能量化了合成形状的几何可行性评分以及量化其物理稳定性评分的刚度ma-Trix的光谱特性。我们展示了如何扩展最新的扩散框架EDM [20],以整合数据分布和学习质量的denoising网络的质量检查器。关键贡献是一种原则性的方法,它决定了数据分散的损失条款与不同噪声水平的质量检查器之间的权衡参数。我们已经评估了shapenet-v2上GPLD3D的性能[6]。实验结果表明,在多个指标上,GPLD3D显着优于最先进的形状发生器。我们还提出了一项消融研究,以证明合并质量检查器并优化训练损失的超参数的重要性。
背景和动机视觉策略学习涉及将视觉观察映射到运动动作上,使机器人能够有效地与环境互动。传统方法通常在多模式作用分布的复杂性以及对高精度和时间一致性的需求中挣扎。最近引入的扩散策略通过采用有条件的降级扩散过程来生成机器人动作,从而提供了有希望的解决方案。这些模型在产生复杂的行为方面表现出了卓越的性能,使其成为机器人操纵和组装任务的理想候选人。此外,整合自然语言处理(NLP)允许多功能任务调理,使机器人能够根据人类指令执行各种任务。
计算机视觉技术在自动驾驶汽车的感知堆栈中起着核心作用。使用此类方法来感知给定数据的车辆周围环境。3D激光雷达传感器通常用于从场景中收集稀疏的3D点云。然而,根据人类的看法,这种系统努力鉴于那些稀疏的点云,因此很难塑造现场的看不见的部分。在此问题中,场景完成任务旨在预测LiDAR测量中的差距,以实现更完整的场景表示。鉴于最近扩散模型作为图像的生成模型的有希望的结果,我们建议将其扩展以实现单个3D LIDAR扫描的场景。以前的作品使用了从LiDAR数据提取的范围图像上使用扩散模型,直接应用了基于图像的扩散方法。差不多,我们建议直接在这些点上操作,并介绍尖锐的和降解的扩散过程,以便它可以在场景规模上有效地工作。与我们的方法一起,我们提出了正规化损失,以稳定在denoising过程中预测的噪声。我们的实验评估表明,我们的方法可以在单个LIDAR扫描中完成场景,作为输入,与最新场景完成方法相比,产生了更多详细信息的场景。我们认为,我们提出的扩散过程公式可以支持应用于场景尺度点云数据的扩散模型中的进一步研究。1
我们提出了Vidim,这是一个视频间隔的生成模型,该模型在启动和最终框架下创建了简短的视频。为了实现高保真度并在输入数据中产生了看不见的信息,Vidim使用级联的分化模型首先以低分辨率生成目标视频,然后在低分辨率生成的视频上生成高分辨率视频。我们将视频插补的先前最新方法归纳为先前的最新方法,并在大多数设置中演示了这种作品如何在基础运动是复杂,非线性或模棱两可的情况下失败,而Vidim可以轻松处理此类情况。我们还展示了如何在开始和最终框架上进行无分类器指导,并在原始高分辨率框架上调节超级分辨率模型,而没有其他参数可以解锁高保真性结果。vidim可以从共同降低所有要生成的框架,每个扩散模型都需要少于十亿个pa-rameters来产生引人注目的结果,并且仍然可以在较大的参数计数下享有可扩展性和提高质量。请在vidim- Interpolation.github.io上查看我们的项目页面。
提供给文本对图像差异模型的提示的质量决定了生成的内容对用户意图的忠诚程度,通常需要“及时工程”。要通过及时的工程来利用目标图像的视觉概念,当前方法在很大程度上通过优化然后将它们映射到伪tokens来依赖嵌入反演。然而,使用这种高维矢量表示是具有挑战性的,因为它们缺乏语义和可解释性,并且只允许使用它们时模拟矢量操作。相反,这项工作着重于反转扩散模型,以直接获得可靠的语言提示。这样做的挑战在于,由此产生的优化问题从根本上是离散的,提示的空间呈较大。这使得使用标准优化技术,例如随机梯度下降,困难。为此,我们利用延迟的投影方案来访问代表模型中词汇空间的提示。此外,我们利用了扩散过程的时间段与图像中不同级别的细节相差的发现。后来的,嘈杂的,前传扩散过程的时间段对应于语义信息,因此,此范围内的迅速反转提供了代表图像语义的令牌。我们表明,我们的方法可以确定目标图像的语义可解释和有意义的提示,该提示可用于合成具有相似内容的多样化图像。我们说明了优化提示在进化图像生成和概念删除中的应用。
摘要:差异隐私(DP)提供了正式的保证,即数据库查询的输出不会揭示有关数据库中存在的任何个人的太多信息。尽管在科学效果中提出了许多差异性算法,但只有少数几个不同的私人查询引擎实现了少数几个端到端。至关重要的是,现有系统假定每个人最多都与一个数据库记录相关,这在实践中是不现实的。,我们提出了一种通用且可扩展的方法,即使个人都可以与任意的许多行相关联,在数据库上执行不同的私有聚合。我们将此方法表示为关系代数中的操作员,并将其在SQL引擎中实现。为了验证该系统,我们测试了行业基准上典型查询的实用性,并通过我们使用的随机测试框架来验证其正确性。我们强调了在实践中部署这样的系统时所学到的承诺和陷阱,并将其核心组件作为开源软件。
单眼深度估计在近年来,由于深度学习的进步,近年来在陆地图像上取得了重大进展。,但主要是由于数据稀缺性而导致的水下场景不足。鉴于水中的光衰减和背面的固有挑战,获得清晰的水下图像或精确的深度非常困难且昂贵。为了减轻此问题,基于学习的方法通常依赖于综合数据或转向自欺欺人或无监督的举止。尽管如此,它们的性能通常受到域间隙和宽松的约束而阻碍。在本文中,我们提出了一种新的管道,用于使用准确陆地深度生成感性的水下图像。这种方法有助于对水下深度估计的模型进行超级培训,从而有效地降低了限制和水下环境之间的性能差异。与以前的合成数据集相反,这些数据集仅将样式转移应用于没有场景内容的情况下的Terres试验图像,我们的方法通过通过创新的STA-
,包括John [18],Reˇsetnjak [27]和Kohn [20],它具有许多重要的应用,特别是弹性结构的薄膜限制[14,15]。关于这个结果的了不起的事情之一是,这是关于古典数学对象的一个惊人事实,数百年前可以理解。许多作品扩展了上述结果(1),以覆盖比k =(n)的各种较大类的矩阵。Chaudhuri和Méuller[8]以及后来的de Lellis和Sz´ekelyhidi [10]考虑了一组形式k = so(n)a so(n)a so(n)b,其中a和b从matos [25]的意义上a和b强烈不相容。faraco和张[13]证明了k = m·so(n)的类似定量刚度结果,其中m so(0, +∞)是紧凑的。在(1)的左侧还需要包括mobius变换的梯度,并且积分位于较小的子集ω'⊂⊂Ω上。最近已通过勒克豪斯和Zemas [24]获得了在球体上定义的地图的相似结果。(1)的最佳常数由[22]中的Lewicka和Méuller研究。我们的主要结果是对[14]的定量刚度估计值的最佳概括,在紧凑的连接的子手机k⊂r 2×2没有边界的情况下。
从患者的女儿获得的附带信息显示,在介绍前大约一年,患者退休,搬进了她的住所,并开始表现出减少的社交互动。在当前演讲前十个月,患者经历了他的第一个“情节”,其特征是持续一到两周的奇异行为和痴迷,自发解决。此后不久,他有第二个“情节”,其特征是退出,与家人的沟通减少以及一周后随后的自发解决方案。在此ED访问前两周,患者开始表现出自我抑制,奇异和偏执妄想的迹象,“僵尸”的视觉幻觉以及躁动。他的女儿形容他“不听,不吃东西,不睡觉,想整天离开房子留在他的车里。”此外,他表现出异常的行为,例如拒绝触摸任何不是蓝色的东西。