4我们使用Mendoza和Villalvazo(2020)开发的FIPIT算法。该算法修改了欧拉元素方程式的标准迭代方法,以避免求解同时求解非线性方程(如标准时间迭代方法)和不规则的插值(如内源性网格方法)。进行比较,附录B.1.2使用值函数迭代解决了模型。5在De Groot等人的附录B.3.7中。(2019年),我们提出了三阶应用程序(3OA)结果,并发现除非引入随机波动率,否则3OA是不必要的(请参阅De Groot,2016年)。对于QLOBC,我们使用DynareObc算法。div> dynareObc和oxcbin时,当均衡是唯一的时候,可以提供相同的解决方案。dynareObc的优点是它在有限的时间内收敛,并且可以测试平衡多重性。6在De Groot等人中。 (2019年),我们研究了针对的校准设置以匹配NFA的第一阶自相关。 我们发现的定性特征没有变化。6在De Groot等人中。(2019年),我们研究了针对的校准设置以匹配NFA的第一阶自相关。我们发现的定性特征没有变化。
自然资源学院芬兰卢克,Latokartanonkaari 9,FI-00790,赫尔辛基,芬兰B迪普拉克经济学与管理,赫尔辛基大学,邮政信箱27,FL-00014,赫尔辛基,赫尔辛基,芬兰C自然资源C自然资源finland finland Luke,finland luke,fi-316芬兰D H ame应用科学大学HAMK,Mustialantie 105,FI-31310,Mustiala,Mustiala,Mustiala,芬兰E芬兰环境学院Syke,Latokartanononononkaar 11,FI-00790,赫尔辛基,赫尔辛基,芬兰,芬兰物理学部,Nansoscience Center,Nansoscience Center,Nancience Center,Nancience Center和School Doment, Jyv University of Askyl - A Askyl - A,PO Box 35,Fi-40014,Jyv�Askyl - ,芬兰G Soilfood Ltd,Viikinkaari 6,Fi-00790,赫尔辛基,芬兰H大气与地球研究所(Inar) FI-00014,芬兰赫尔辛基
在热带金枪鱼钱包面临的各种挑战中,需要减少燃油消耗和碳足迹,并最大程度地减少对易受伤害物种的兼容。设计用于预测最佳金枪鱼捕捞场的工具可以通过确定新合适的钓鱼场的位置,从而减少搜索时间,从而适应由于气候变化而导致的鱼类分布变化。虽然有关发现脆弱物种的较高可能性的信息可能会导致兼容减少。本研究的目的是为更可持续和清洁的捕鱼做出贡献,即捕获相同数量的目标金枪鱼,并以更少的燃油消耗/排放和较低的旁观捕获。为了实现这一目标,热带金枪鱼作为目标物种捕获,而丝滑的鲨鱼意外捕获,因为印度洋中的机器学习模型使用了这些机队的历史捕获数据和环境数据来建模。所得模型的SKJ和YFT为0.718和0.728的AC稳定性(SKJ的TPR = 0.996,YFT分别为0.993),比高或低捕获量更好。在BET的情况下,不是该机队的主要目标物种,其准确性低于先前物种的准确性。关于丝滑鲨,存在/不存在模型的精度为0.842。即使模型的性能具有改进的余地,目前的工作还是通过仅使用AS AS AS AS INTUP数据预测环境数据来实时通过地球观察计划实时提供的预测捕捞场的基础。将来可以改进这些模型,因为更多的输入数据和有关影响这些物种的主要环境条件的知识。
Aarne Hummelholm 芬兰于韦斯屈莱大学信息技术学院 Aarne.hummelholm@elisanet.fi 摘要:我们生活在数字世界中,可以为人们提供更有效的治疗方法,使他们在家中生活更长寿、生活得更好。人们可以获得更好的家庭护理和预防性保健。人们可以轻松地在身体和手腕上携带便携式传感器和智能设备,这些传感器和智能设备可以实时将他们的生命信息传递到医院系统,医护人员甚至可以实时跟踪人体活力。尽管数字世界为改善医疗保健系统和使疾病分析更有效提供了良好的机会,但我们必须更深入地研究这个问题。设备和系统可能无法很好地协同工作。几乎每个制造商都有自己的技术解决方案,并且它们只能在特定环境中工作。医疗保健系统非常需要统一的概念和 IT 平台解决方案。当前使用的技术多种多样。标准正在发展,但尚未准备好。此外,远程医疗通信系统和设备缺乏技术和功能要求,以及在远程医疗中提供安全数据传输的要求。在新闻中,我们经常看到和听到,有很多医疗设备损害了世界各地患者的健康。然后有很多漏洞,这意味着安全风险、网络风险和数据可靠性风险。这些风险与物联网设备和传感器以及数据传输领域有关。本文件描述了面向未来社会的远程医疗解决方案。包括医院环境和患者家中的医院设备的简要介绍。主要整体是通信安排,包括患者传感器的生物信号形成和生物信号流向医院信息系统进行分析和监控。本研究考察了针对电子健康系统的网络威胁和攻击,以及这对患者健康意味着什么。本研究还考察了真实性、可追溯性、认证和隐私保护。关键词:医疗保健系统、漏洞、网络威胁、网络攻击、远程医疗
瑞典农业科学大学生物量技术中心的森林生物材料和技术系Umeå大学,Umeå90187,瑞典E工业化学和反应工程,约翰·加多林工艺化学中心,ÅboAkademi大学,Åbo-Turku 20500,芬兰F芬兰可持续化学研究部Box 3000,Oulu Fi-90014,芬兰G化学研究所,里约热内卢大学联邦大学,阿雷格尔Porto Alegre,RS,RS,巴西h h h porto Alegre,h巴西h化学系,科学学院,国王沙特大学,国王科学院。 Box 2455,Riyadh-11451,沙特阿拉伯Box 3000,Oulu Fi-90014,芬兰G化学研究所,里约热内卢大学联邦大学,阿雷格尔Porto Alegre,RS,RS,巴西h h h porto Alegre,h巴西h化学系,科学学院,国王沙特大学,国王科学院。Box 2455,Riyadh-11451,沙特阿拉伯Box 2455,Riyadh-11451,沙特阿拉伯
受气候缓解目标国家的驱动国家,全球大流行后的经济增长和恢复的低成本可再生能源的优先级。很明显,可疑的技术选择会导致更广泛的社会经济利益,这是在将其能源部门朝着更高份额的可再生能源份额过渡到更高份额的国家中所表明的。对更好地理解能源过渡对就业的直接影响的兴趣越来越大,对传统能源部门失去的工作的担忧将对世界各地的决策介绍至关重要。这项研究重点是加速可再生能源的净就业影响,该净摄入量将于2050年到2050年从可再生能源中获得100%的能源,与巴黎协议的雄心勃勃的目标兼容。与电力,热量,运输和脱盐部门相关的直接能源工作从2020年的约5700万增加到到2050年的近1.34亿。可再生能源和可持续技术中的价值链比采摘化石燃料更重要。结果表明,全球能源过渡将对世界各地经济的未来稳定和增长产生积极影响。©2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
含有酚类培养基(例如李子)的食物已显示出对骨矿物质密度(BMD)的保护作用,但只有某些人会遇到这些好处。对一项为期12个月的随机对照试验的事后分析旨在确定肠道微生物组,免疫反应和李子对绝经后妇女的骨保护作用之间的关系。每天消耗50-100 g李子的受试者根据总髋骨矿物质密度的变化百分比(分别为BMD,≥1%或≤-1%变化),将响应者分为反应者(n = 20)和非反应者(n = 32)。DXA扫描用于确定身体成分和BMD。使用免疫测定和流细胞术测量免疫标记。使用超性能液相色谱 - 串联质谱法分析靶向酚类代谢产物。通过16S rRNA基因PCR扩增子测序表征粪便菌群。修剪消耗12个月后,抗弹药标志物显示响应者的IL-1β和TNF-α水平的较低。QIIME2序列分析表明,响应者和非反应者的微生物组在Alpha(Shannon和Faith PD,Kruskal-Wallis P <0.05)和Beta多样性(未加权的UNIFRAC,Pertanova P <0.04 P <0.04)中有所不同。此外,响应者的细菌家庭振荡性甲状酸酯和lachnospileceae(ancom-BC p <0.05)的丰度更高。这些发现提供了证据表明,在最初低BMD的绝经后妇女如果携带某些肠道微生物,则可以从李子中受益。这些见解可以指导精确的营养策略,以改善针对饮食和微生物组成分量身定制的BMD。
摘要。泥炭地管理实践,例如排水和恢复,对北方泥炭地甲烷(CH 4)伏克会产生强大影响。此外,CH 4倍孔受到局部环境条件的强烈控制,例如土壤水文,温度和植被,它们都因气候变化而导致了很大的变化。在本世纪,管理实践和气候变化都预计会影响Peatland CH 4倍孔,但是这些变化的幅度和净影响仍然没有足够的了解。在这项研究中,我们模拟了两种森林管理实践的实践,旋转林业和连续覆盖林业以及泥炭地修复,并使用陆地模型JENA模型(Jena)跨越了Biosphere-Atmother-atmopher peater anber peater anber peater y的山地模型,以假设的林地泥土跨越了芬兰(Finland)的泥炭地( Himmeli(赫尔辛基的甲烷积聚和泥炭地发射模型)。我们使用两个RCP(代表性浓度途径)发射方案进一步模拟了气候变暖的影响,RCP2.6和RCP4.5。我们研究了CH 4浮雕,土壤水位水平(WTL),土壤温度和土壤碳动力学对管理实践和气候变化的反应。我们的结果表明,管理实践对泥炭地WTL和CH 4排放有很大的影响,这些排放持续了数十年,并且恢复后的排放量增加,并且
生长分化因子 11 (GDF11) 和 GDF8 (MSTN) 是密切相关的 TGF- β 家族蛋白,它们与几乎相同的信号受体和拮抗剂相互作用。然而,GDF11 在体外和体内似乎比 GDF8 更有效地激活 SMAD2/3。配体具有不同的结构特性,将独特的 GDF11 氨基酸替换到 GDF8 中可增强所得嵌合 GDF8 的活性。我们通过基因改造 GDF11 和 GDF8 的成熟信号结构域,研究了它们在体内可能不同的内源性活性。将 GDF8 完全重新编码为 GDF11 会产生缺乏 GDF8 的小鼠,其 GDF11 水平比正常水平高出约 50 倍,肌肉质量略有下降,但对健康或生存没有明显的负面影响。将 GDF11 指尖区域的两个特定氨基酸替换为相应的 GDF8 残基,可导致产前轴向骨骼转变,与 Gdf11 缺陷小鼠一致,且骨骼或心肌发育或体内平衡没有明显紊乱。这些实验揭示了体内 GDF11 和 GDF8 成熟结构域之间的独特特征,并确定了早期骨骼发育对 GDF11 的特定要求。
生物多样性,种类繁多的物种和生态系统,通过提供原材料(例如食品,医学和木材)和基本过程(例如气候调节和洪水控制; Rands等,2010),在人类生存中起着重要作用。然而,随着过去几十年人口的迅速增长,人类已经大大降级了环境,从而导致生物多样性的大量且不可逆转地丧失(Sieck等,2011)。因此,阐明生物多样性的时间 - 空间分布对于保护工作,生态系统管理和可持续发展至关重要(Hunter and Yonzon,1993; Hu等,2020),尤其是在生物多样性的热点(Zhang et al。,2021; Zhang Y.Z.等,2022)。当前的保护议程专注于宏观生物(例如动物和植物),但忽视微生物,这是生物多样性的最大来源,具有重要的生态系统功能和服务(Guerra等,2021)。和微生物是生态系统对气候变化的反应的重要组成部分(Monson等,2006; Carney等,2007)。然而,微生物的生物地理模式和维护过程不及宏观生物的知名度,因为前者的尺寸小,丰度,广泛的分布和快速繁殖(de Wit and Bouvier,2006; Ren等,2018)。因此,我们对微生物多样性的了解有限并不符合其在生态系统功能中的关键作用,并且不足以应对人类世的威胁(例如,气候变化和人类扰动; Bodelier,2011; Zhou and Ning,2017; Guerra et et an。