摘要 - 使用监视设备可以帮助避免受伤甚至死亡。当前,使用可穿戴传感器(例如运动传感器和其他传感器)来检测患者何时癫痫发作并警告他们的护理人员。但是,这些设备的开发阶段需要劳动密集型对收集的数据进行标记,这导致了开发可穿戴监测设备的困难。因此,必须采用更自动化的辅助方法来标记癫痫发作数据和可穿戴设备,以检测癫痫发作以进行日常监测。我们用建议的手镯从医院外癫痫发作的数据中收集了数据。癫痫发作后,要求受试者按下标记按钮。我们还提出了移动段(EAMS)算法的自动提取和注释,以排除非移动段。然后,我们使用机器学习方法使用了两层集合模型(TLEM)来对癫痫发作和非癫痫发作段进行分类,该段旨在处理不平衡的数据集。然后,由于这些数据集的不同不平衡,我们为整个(全天和晚上)癫痫发作案例和夜间癫痫发作检测案例分别构建了两个单独的TLEM模型。EAMS算法排除了93.9%的原始数据。TLEM模型
债务管理和借贷能力效应:将自然资本整合到金融报告中将提高金融市场的审查并改善公共部门发行人的信用风险评估。与某些批评家的担忧相反,而政府资产基库将通过合并自然资本来扩大,公共部门发行人的借贷能力不会改变。评级机构的观点,以及投资者对公共部门信贷的需求和定价,反映了政府借款人的债务服务能力。这种能力基于关键标准,例如运营和资本预算的可持续性,经济基本面以及产生收入的能力,而不仅仅是资产估值。
摘要。移动机器人中机器人技术的进步正在迅速发展,并在工业,军事,医学和公共服务等各个部门中使用。挑战包括感知,本地化,运动控制和路径计划。Dijkstra算法的目的是一种贪婪的算法,是优化计划计划以提高运动效率。Dijkstra的算法是图理论中的一种有用的方法,可以利用迭代方法在加权图中找到两个节点之间的最短路径来计算距离。所建议的算法通过同时确定从起点到所有其他点的最短途径,利用各种路径或继续在相同的路径上到达其他节点,从而加快了初始过程的速度。尽管如此,它始于中央节点,利用不受所采用路线影响的数据。作者使用服务机器人对Dijkstra的算法进行了实验,并成功地导航了三个障碍而没有任何碰撞。机器人通过保持0.23 m/s的平均速度为0.23 m/s,X轴上的平均误差为0.021米,在Y轴上保持0.021米,在找到最短和最快的路径方面取得了成功。
●a*算法:在存在燃料站和虫洞时计算出的距离和节点方面表现出了出色的性能。A*的启发式性质使其能够有效利用这些元素,从而导致较短的路径和减少的计算工作。燃料站和虫洞的存在提高了A*的效率,使其可以更快地找到最佳或近乎最佳的路径。●Dijkstra的算法:尽管与**相比,dijkstra的算法通常效率较低,但仍受益于加油站和虫洞。由于燃料站而导致的路径成本的降低以及通过虫洞的可用性提高了其性能,但改进并不像A*那样明显。没有这些元素,Dijkstra的算法在更长的路径和更高的节点计算方面挣扎。
通讯作者:Mahmut Dirik(mhmd.dirik@gmail.com)摘要路径计划问题是自动驾驶汽车中研究最多的主题之一。在过去的十年中,基于抽样的路径计划算法引起了研究界的重大关注。快速探索随机树(RRT)是一种基于抽样的计划方法,由于其渐近最佳性,研究人员是一个关注的问题。但是,在路径规划中使用接近障碍物的样品和急转弯的路径并不能使实时路径跟踪应用程序有效。为了克服这些局限性,本文提出了RRT和Dijkstra算法的组合。RRT-Dijkstra释放了一个较短且无碰撞的路径解决方案。它是通过各种因素来衡量的,例如路径长度,执行时间和回合总数。此处的目的是基于指标,即路径长度,执行时间和转折点总数的审查和绩效比较。在用障碍物结构的复杂环境中测试了算法。实验性能表明,RRT-Dijkstra需要在2D环境中更少的转折点和执行时间。这些是提出方法的优势。该建议的方法适用于离线路径计划和路径以下。