本文报道了一种环保的锂对苯二甲酸/聚乳酸 (Li 2 TP/PLA) 复合细丝的开发,该细丝通过熔融沉积成型 (FDM) 进行 3D 打印后可用作锂离子电池的负极。通过在挤出机内直接引入合成的 Li 2 TP 颗粒和 PLA 聚合物粉末,实现了 3D 可打印细丝的无溶剂配方。通过加入平均 M n ∼ 500 的聚乙二醇二甲醚 (PEGDME500) 作为增塑剂,提高了可打印性,而通过引入炭黑 (CB) 则提高了电性能。彻底讨论了热、电、形态、电化学和可打印性特性。通过利用 3D 打印切片软件功能,提出了一种创新方法来改善 3D 打印电极内的液体电解质浸渍。© 2021 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据知识共享署名 4.0 许可条款发布(CC BY,http://creativecommons.org/licenses/ by/4.0/),允许在任何媒体中不受限制地重复使用作品,前提是对原始作品进行适当引用。[DOI:10.1149/ 2162-8777/abedd4]
植物皂苷(PMS)购自成都慕斯特生物技术有限公司(四川,中国),纯度≥98%。A549、95D、SPC-A1、H460和H292细胞购自美国典型培养物保藏中心(ATCC;美国弗吉尼亚州马纳萨斯)。RPMI-1640培养基购自HyClone公司(Cat#SH30809.01;美国犹他州洛根)。胎牛血清(ATCC 30-2020)购自赛默飞世尔科技公司(美国马萨诸塞州)。二甲基亚砜(DMSO)、1-溴-3-氯丙烷、异丙醇、乙醇、顺铂(DDP)和其他溶剂购自Sigma公司(美国密苏里州圣路易斯)。细胞计数试剂盒-8 (CCK-8)、0.25%胰蛋白酶、0.01 M PBS (粉末,pH7.2~7.4)、1%多聚甲醛、线粒体膜电位测定试剂盒(含JC-1)和100×青霉素-链霉素溶液均购自北京索莱宝科技有限公司(北京,中国)。B27、表皮生长因子 (EGF) 和碱性成纤维细胞生长因子 (bFGF) 均购自 Invitrogen 公司(CA,美国)。一抗,包括抗 Caspas-3 (Cat#ab13847)、抗 Caspas-9 (Cat#ab32539)、抗 SOX2 (Cat#ab93689)、抗 CD44 (Cat#ab216647)、抗
摘要:这项研究利用了ceōriaxone和蛋氨酸的合成混合配体式金属(II)络合物的稳定物。使用MELɵNG点,诱导,溶解度,紫外线和FT-IR光谱表征了复合物。还评估了配体和合成复合物的含量。在复合物中的金属到配体的raɵo为1:1:1。络合物是鲜绿色,浅黄色和粉红色的颜色,其百分比(45-91)%。复合物是固体,具有高熔点点(93-289)oC。所有复合物都是空气稳定的,通常在二甲基亚氧化二甲基磺胺(DMSO)中溶于N-己烷中,这表明复合物是极性的。由所有复合物的诱导测量结果产生的给出了低值(6.8-7.3)SCM 2 mol -1),这表明复合物的电解质性质差。 从红外研究的结果中观察到,配体通过配体的氧气和氮原子与金属配位,并且紫外可见的光谱表明所有形成的络合物都有八面体的几何形状。 对复合物的筛查表明,某些复合物对针对10-30μg/ml内测试的微生物的细菌表现出相当大的细菌。给出了低值(6.8-7.3)SCM 2 mol -1),这表明复合物的电解质性质差。从红外研究的结果中观察到,配体通过配体的氧气和氮原子与金属配位,并且紫外可见的光谱表明所有形成的络合物都有八面体的几何形状。对复合物的筛查表明,某些复合物对针对10-30μg/ml内测试的微生物的细菌表现出相当大的细菌。
有机 - 无机杂种钙钛矿(OIHP)已被证明是有希望的非易失性记忆的活动层,因为它们在地球,移动离子和可调节的尺寸中的丰富丰度。但是,缺乏对一维(1D)OIHP的可控制造和存储特性的研究。在这里,报告了1D(NH = CINH 3)3 PBI 5((IFA)3 PBI 5)钙钛矿和相关的电阻记忆特性。溶液处理的1D(IFA)3 PBI 5晶体具有良好定义的单斜晶相和长度约为6 mm的针状形状。它们表现出3 eV的宽带隙,高分解温度为206°C。此外,使用N,N-二甲基甲酰胺(DMF)和Dimethyl Sulfoxide(DMSO)的双溶剂获得了具有良好均匀性和结晶的(IFA)3 PBI 5薄膜。研究了这种各向异性材料的内在电性能,我们构建了仅由Au /(IFA)3 PBI 5 /ITO组成的最简单的存储单元,该电池构成了带有横式阵列设备构造的高型设备。电阻随机访问存储器(RERAM)设备具有双极电流 - 电压(I-V)磁滞特性,显示了所有基于OIHP的新闻器的记录低功耗〜0.2 MW。此外,我们的设备拥有最低的功耗和“设置”电压(0.2 V),其中最简单的基于钙钛矿的存储器设备(也包括无机设备),这不需要需要双金属电极或任何其他绝缘层。他们还表现出可重复的电阻切换行为和出色的保留时间。我们设想1D OIHP可以丰富低维杂种钙钛矿库,并为内存和其他电子应用程序领域中的低功率信息设备带来新的功能。
酪蛋白激酶2-α蛋白是治疗白血病癌的靶标之一,它是调节白血病癌生生长的重要分子。姜黄素化合物被证明具有2-α酪蛋白抑制剂的活性,但仍没有研究将姜黄素衍生物化合物作为2-α酪蛋白酶抑制剂进行测试。这项研究的目的是根据酪蛋白化合物及其衍生物作为酪蛋白激酶抑制剂2-αIDGDP:3PE1:3PE1通过分子对接(基于最低的键合能(ΔG)和相互作用),并知道ADMET的预测。所使用的方法是带有自动库克工具1.5.7的分子张力。接下来是Lipinski对姜黄素化合物的五(RO5)测试及其衍生物的规则,并伴随着使用Swiss Adme和Admetsar进行ADMET筛选。获得的结果是三种测试化合物,具有最佳的游离键能(ΔG),即DI -O -O -ECETEDETEDEMETHOXY CURCUMIN = -10.13 kcal/mol,二甲氧基姜黄素= -9.93 kcal/mol/mol和Dimethyl Curcumin = -9,88 kacal/mol。氨基酸残基最大程度地形成氢键的是valine(Val 116)多达22种相互作用,其次是赖氨酸(Lys 68)(Lys 68)多达18种相互作用,而天冬氨酸(ASP 175)(ASP 175)多达17个相互作用。三种最佳测试化合物还符合RO5标准,并且在这些化合物中进行ADMET筛选显示了活性预测的结果,因为2-α酪蛋白抑制剂具有吸收参数,分布,代谢,排泄,毒性(ADMET)已经很好。基于从这项研究获得的数据,预计三种最佳测试化合物具有2-α酪蛋白抑制剂的潜力。
7-氨基-3-氯甲基-3-头孢烯-4-羧酸对甲氧基苄酯盐酸盐 (ACLE) 购自 AK Scientific (加利福尼亚州联合城)。4-硝基苯硫酚 (NBT) 和 3-马来酰亚胺基丙酸购自 TCI Chemicals (日本东京)。头孢噻吩购自 P212121, LLC (马萨诸塞州波士顿)。氘代二甲基亚砜 (DMSO-d 6 ) 购自 Cambridge Isotope Laboratories (马萨诸塞州安多弗)。三乙胺 (TEA)、4-甲基吗啉 (NMM)、无水二氯甲烷 (DCM)、无水二甲基甲酰胺 (DMF)、己烷、乙醚、乙酸乙酯、薄层色谱法 (TLC) 硅胶 60 玻璃板、无水磷酸氢二钠、无水磷酸二氢钠、CENTA、二甲基亚砜 (DMSO)、三氟乙酸 (TFA)、苯甲醚、硫醇官能化的 4 臂聚乙二醇 (4 臂-PEG-SH; 20 kDa)、来自蜡样芽孢杆菌的 β L (β L-BC; cat.# P0389, 28 kDa, 2817.8 U/mg 蛋白, 4.72% 蛋白)、来自铜绿假单胞菌的 β L (β L-PA; cat.# L6170, 30 kDa, 1080 U/mg 蛋白,1% 蛋白)、来自阴沟肠杆菌的 β L(β L-EC;目录号 P4524,20-26 kDa,0.37 U/mg 蛋白,56.45% 蛋白)、来自溶组织梭菌的胶原酶、磷酸盐缓冲盐水 (PBS)、硝酸钠、阳离子调整的 M¨uller-Hinton 肉汤 (CMHB)、α-氰基-4-羟基肉桂酸、1-[双 (二甲氨基) 亚甲基]-1H-1,2,3-三唑并[4,5-b]吡啶 3-氧化物六氟磷酸盐 (HATU)、N,N-二异丙基乙胺 (DIPEA) 和盐酸 (HCl) 均购自 Millipore Sigma(密苏里州圣路易斯)。甲醇、硅胶、胰蛋白酶大豆肉汤 (TSB) 和 SYLGARD 184 硅胶弹性体试剂盒购自 Thermo Fisher Scientific (马萨诸塞州沃尔瑟姆)。甲氧基聚乙二醇硫醇 (mPEG-硫醇;1.7 kDa) 购自 Laysan Bio, Inc. (阿拉巴马州阿拉伯)。金黄色葡萄球菌菌株 25923 和 29213、耐甲氧西林金黄色葡萄球菌 (MRSA) MW2、蜡样芽孢杆菌 13061、大肠杆菌 25922 和阴沟肠杆菌 13047 购自 ATCC (弗吉尼亚州马纳萨斯)。铜绿假单胞菌 PA01 由沃尔特里德陆军研究所 (马里兰州银泉) 慷慨捐赠。大肠杆菌 DH5-α 购自 Life Technologies (加利福尼亚州卡尔斯巴德)。双马来酰亚胺-PEG 3(mal-PEG-mal,494.5 Da)购自 BroadPharm(加利福尼亚州圣地亚哥)。Repligen Biotech 纤维素酯 500-1000 Da 分子量截留 (MWCO) 透析管购自 Spectrum Labs Inc.(加利福尼亚州兰乔多明格斯)。超高纯度氮气(99.999%)购自 Airgas(罗德岛州沃里克)。所有实验均采用超纯去离子水(18.2 MΩ·cm,Millipore Sigma,马萨诸塞州比勒里卡)。本研究中提到的室温 (RT) 约为 23 ◦ C。
目前用于治疗 2 型糖尿病的药物存在重大缺陷。尽管开发了新型药物和靶点,但全球糖尿病问题并未缓解。常规试验中寻找新线索的工作继续受到持续未满足的患者需求的重大影响。该领域用于识别新药的方法随着市场趋势而发展,导致最近化合物数量有所增加。但令人担忧的趋势和全新的困难仍然存在。最近,一种称为 N-亚硝基二甲胺的致癌杂质被发现存在于二甲双胍中,二甲双胍是使用最广泛的糖尿病一线药物 (NDMA)。因此,纯度和毒性是发现和开发新药的重大障碍。针对 SGLT-2 的较新药理学类别也显示出进步和挑战。胰高血糖素样肽-1 受体激动剂和二肽基肽酶-4 抑制剂在过去具有相同的效果。此外,为了获得治疗成功,研究人员必须了解新分子的机械特征的意义以及已知和新发现的蛋白质靶点的原子水平暴露,这两者都有助于以更高的选择性和特异性识别新的先导分子。
摘要:从金属到配体电荷转移(MLCT)发射的氟吡啶基复合物(RPC)已开发为DNA探针,并正在研究为潜在的抗癌药物。在这里,我们报告了结合DNA的MLCT释放性RPC与Cy5.5标记的DNA进行FO fo rster共振能量转移(FRET),形成了Mega-Stokes Shift Fret Fret Pairs。Based on this discovery, we developed a simple and rapid FRET binding assay to examine DNA-binding interactions of RPCs with diverse photophysical properties, including non-“light switch” complexes [Ru(dppz) 2 (5,5 ′ dmb)] 2+ and [Ru(PIP) 2 (5,5 ′ dmb)] 2+ (dppz = dipyridophenazine, 5,5 ′ dmb = 5,5'-dim甲基-2,2'-二吡啶,PIP = 2-苯基 - 米达佐[4,5- f] [1,10] - 苯拥olththroline)。与双链体,G-四链体,三向连接和不匹配DNA的结合亲和力,并确定了衍生的FRET供体 - 受体接近,提供了有关潜在结合位点的信息。分子表明,令人鼓舞的抗癌特性,包括与PARP抑制剂Olaparib协同作用,机械研究表明,[RU(PIP)2(5,5'DMB)] 2+ ACTS以阻止DNA复制的进展。■简介
通过微波辅助的Diels-Alder反应实现石墨烯与二甲基乙酰二羧酸酯的石墨烯的功能化。通过互补的特征技术,对修饰纸的物理,化学和电化学性质进行了研究。密度功能理论计算被用来检查功能化机制,并强调缺陷的作用,例如在去角质期间在石墨烯中引入的环氧桥等缺陷。我们的发现为大规模生产高质量石墨烯材料的有效和成本效益的方法提供了宝贵的见解。具体而言,评估了含有功能化石墨烯的阳极材料的电化学性能,以用于锂离子电化学能源存储设备,显示出极好的电化学可逆性和速率能力。循环伏安法分析揭示了几个循环后的材料稳定,导致库仑效率高达95%,放电能力为162.3 ma·H·H·H·g -1。电静态循环测试表明,材料电极在10C的C率下保留其初始容量的57%,表明高功率能力。这些有希望的结果位置有机修饰的石墨烯是锂离子CA的潜在材料,其特定能力与较低电位的最后一个插入阶段能力保持一致。总体而言,该研究的发现为基于石墨烯的材料在储能应用中的发展提供了重要贡献。
石墨烯具有有希望的物理和化学特性,例如高强度和柔韧性,再加上高电导率和热导率。因此,它被整合到基于聚合物的复合材料中,以用于电子和光子学应用。与石墨烯发育相关的主要约束是,具有强疏水性,几乎所有分散体(通常是其处理和处理所需施用所必需的)都是在有毒的有机溶剂中制备的,例如N-甲基吡咯烷酮或N,N,N-二甲基甲酰胺。在这里,我们描述了如何使用球磨机制备去角质石墨。通过电子显微镜和拉曼光谱法测量,产生的石墨烯平均为三到四层厚,直径约500 nm。可以以光实体的形式存储;并且很容易分散在水性媒体中。我们的方法包括四个主要步骤:(i)有机分子(三聚氰胺)在石墨中的机械化学插入,然后在水中悬浮; (ii)洗涤悬浮石墨烯以消除大多数三聚氰胺; (iii)稳定石墨烯片的隔离; (iv)冻结以获得石墨烯粉末。该过程分别用于水性悬浮液和干粉末的6-7或9-10 d。该产品具有明确的属性,可用于许多科学和技术应用,包括毒理学影响评估和创新医疗设备的生产。