在过去的二十年中,Gan Hemts(高电子迁移率晶体管)已证明其超过硅电源器件限制的高潜力。然而,基于GAN的侧向下摆遭受了几个突出的问题,例如电子捕获和相关的设备可靠性,这是由于闸门边缘处的尖峰电场以及没有雪崩效应。此外,较高的击穿电压需要增加门才能排出距离,从而导致不需要的大设备尺寸。这就是为什么垂直GAN Power设备越来越引起人们的兴趣和社区的强烈努力的原因。的确,高击穿电压,雪崩能力,具有高电流扩展的电场管理和小型设备足迹是垂直电源设备的一些主要优势。如果在硅底物上生长,则可以大大降低整体成本。在这项工作中,我们演示了具有高性能和线性击穿电压缩放的准垂直gan-on-si销钉二极管,并具有漂移层的厚度。完全垂直销钉二极管也被制造出了相似的崩溃场,甚至可能降低了反抗性的罗恩。
在发生内部短路的情况下,使用Dual-Fuse和Auxilariary Crowbar开关断开故障的腿,然后是备用腿(图。1,红色虚线框)自发连接,从而可以连续操作。为了提高系统的可靠性和紧凑性,可以在功率半导体[5],[6]组件(IGBTS,MOSFET等)上单层整合使用的熔断器,如图1(Fuse-On-transistor,蓝色虚线框)。在功率上的保险丝的集成分两个步骤进行了半导体组件。首先,熔断器,称为“独立保险丝”(图1,绿色虚线盒),由硅基板上的薄铜层(18 µm)制成,以研究组件的热和电气行为。
放射治疗 (RT) 的主要挑战是向肿瘤提供足够高的治疗剂量,同时保持附近器官受到可耐受的剂量,新的治疗方式正在迅速涌现。FLASH 放射治疗提供的治疗剂量比传统 RT(0.05 Gy/s)快几个数量级(≥40 Gy/s),并且已被证明可以降低正常组织发生并发症的可能性,同时提供与传统剂量率相似或更好的肿瘤控制率,减少治疗时间和器官运动相关问题。然而,FLASH RT 的临床实施面临着重大挑战,因为它的要求使得大多数现有的剂量测定设备已过时。碳化硅 (SiC) 的物理特性使其成为一种有趣的辐射剂量测定材料。SiC 的宽带隙降低了热产生电荷载流子的速率,从而与硅相比降低了漏电流和噪声。特别值得注意的是,SiC 每 mGy 沉积的信号产量(4H-SiC 为 425 pC/(mGy · mm3))低于硅。这使得 SiC 成为超高剂量脉冲辐射场或直接光束监测剂量测定的良好选择,其中半导体中的瞬时剂量沉积很大,可能会使传统硅二极管饱和。此外,SiC 具有更高的位移能量阈值,因此辐射硬度高于硅。如今,SiC 技术已经成熟,高质量基板可达 200 毫米,可广泛使用。在本次演讲中,我们将介绍在 IMB- CNM 设计和制造的新型碳化硅 PiN 二极管,旨在应对 FLASH RT 的技术挑战。在 PTB(德国)使用 20 MeV FLASH 电子束进行的首次表征中,这些二极管显示出其适用于高达每脉冲 11 Gy(4 MGy/s)剂量的相对剂量测定,且剂量测定性能可与商用金刚石剂量计相媲美 [doi:10.1088/1361-6560/ad37eb]。在 CMAM(西班牙)使用 7 MeV 质子测试了带有 FLASH 质子束的 SiC 二极管的性能,结果显示它们与剂量率具有良好的信号线性度,并且每脉冲剂量至少为 20 Gy 时响应可重复。最后,在 CNA(西班牙)使用高 LET、强脉冲质子束研究了二极管的抗辐射性。二极管的灵敏度在 1 MeV 质子中以 -1.34%/kGy 的初始速率逐渐下降,并且仅在接近 750 kGy 的剂量下才稳定下来。然而,即使累积剂量为几 MGy,每脉冲剂量的线性响应在很宽的剂量率范围内也能保持。所有这些测量都是在无需外部施加电压的情况下进行的。总之,在 IMB-CNM 制造的碳化硅二极管是硅和金刚石剂量计的真正替代品,适用于需要精确实时相对剂量测定的广泛应用,要求快速响应和长期稳定性。
我主要在数学分析和数理论中具有广泛的兴趣。我对任何对潜在学生感兴趣的事物感到开放。我监督的一个博士项目可能与我最近从事的一些主题有关:
纳米结构二氧化钛 (NS-TiO2) 是一种无毒、环保、廉价、高效的功能材料,具有广泛的应用范围 [8–11]。在过去的十年中,纳米结构 TiO2 可以具有化学计量或非化学计量组成,作为一种有前途的高效光催化剂,用于合成符合绿色化学原则的有机化合物,引起了世界各地研究人员的越来越多的关注 [12–17]。如今,纳米结构材料由于其一些独特的特性而成为一个重要的研究领域。在所有过渡金属氧化物中,TiO2 纳米结构是现代科学技术中最美观的材料 [1]。纳米 TiO2 纳米结构包括二氧化钛纳米颗粒 (TiO2-NPs) 和二氧化钛纳米管 (TNTs) [18]。随着纳米技术的发展,NS-TiO2 找到了许多应用。纳米二氧化钛(nano-TiO2)已广泛应用于环境保护、化妆品、抗菌剂、自清洁涂料和癌症治疗、太阳能电池、光催化和复合纳米填料[19–21]。由于其独特的尺寸和高比表面积,纳米 TiO2 比二氧化钛具有更稳定的物理和化学性质。此外,纳米 TiO2 具有良好的抗菌活性、良好的生物相容性和独特的光催化活性[24],在生物医学领域具有巨大的应用潜力[22, 23]。研究表明,纳米结构 TiO2 可引发良好的分子反应和骨整合,骨形成效果优于非纳米结构材料[25–27]。所有这些形式的 NS–TiO2 的独特物理化学性质使该材料在许多应用中具有光明的未来。已经发表了一些关于二氧化钛不同方面的评论和报告,包括其性质、制备、改性和应用。然而,尽管纳米结构二氧化钛系统在骨修复方面的发展取得了进展,但关于这一主题的评论文章仍然很少[28]。本章的目的是介绍和讨论纳米结构二氧化钛(NS-TiO 2 )的性质[29]、制造、改性和应用。随着纳米技术的出现,NS-TiO 2 已发现了许多应用。
1。上下文SIC MOSFET由于其强劲的损失而广泛用于新应用设计,并且具有高开关频率和高工作温度的功能。与氧化门相关的可靠性问题已经很好地解决,并且已经发表了许多有关阈值电压不稳定性的研究[1; 2]。使用车身二极管避免外部Schottky二极管[3; 4]。在本研究中,对1.2 kV的SIC MOSFET体二极管进行了压力并进行了研究,以确定使用时任何衰老或降解问题。
摘要 — 评估了金刚石 pn 结贝塔伏特电池能量转换效率的温度依赖性。我们制造了伪垂直金刚石 pn 结二极管,并表征了其在 5-300 K 电子束辐照下的能量转换效率。金刚石 pn 结二极管在 150-300 K 时的能量转换效率为 18-24%,是硅 PiN 二极管的两倍多。另一方面,在 100 K 以下,由于金刚石的串联电阻增加,二极管的能量转换效率显着下降。在 150K 以上,金刚石 pn 结二极管的能量转换效率的温度依赖性小于硅二极管,这将使金刚石 pn 结贝塔伏特电池成为一种有前途的装置,用于在除低温区域以外的宽温度范围内进行遥感设备的能量收集。
使用合作方法合成二氧化锰(MNO2)纳米颗粒,其结构,光学和电化学性质被系统地表征。透射电子显微镜(TEM)表明,MNO2纳米颗粒表现出明确的形态,尺寸分布均匀。X射线衍射(XRD)分析证实了材料和拉曼光谱的晶体性质进一步支持MNO2相的鉴定。傅立叶转换红外(FTIR)光谱证明了特征官能团的存在,而紫外线可见(UV-VIS)光谱估计的光条间隙为2.9 eV。热重分析(TGA)强调了MNO2的热稳定性,观察到最小的体重减轻高达800ºC。使用环状伏安法(CV)和电化学阻抗光谱(EIS)评估电化学性能,以10 mV/s的扫描速率揭示了236.04 f/g的高特异性电容。这些结果表明,MNO2纳米颗粒具有出色的电化学性能,使其成为能源储能应用的有前途的候选人。关键字:锰二氧化碳,共同沉积法,电化学性能,储能应用。
在环理论中,构建一个包含另一个环的更大环非常有用,这被称为环扩展 [1-2, 11-15]。最近,人们研究使用 Turiyam 环 [16] 处理四向数据分析,并研究其广泛的性质 [17-19] 来解决各种决策问题。然而,需要对一些猜想和方程进行基本的证明,以理解数学代数的可用性 [20]。为了实现这一目标,本文重点研究了一些丢番图方程的可逆性条件及其对 Turiyam 环的扩展。