PIST 失败 STPS20100 (QPL) 75% 80% 100% STPS1045 (QPL) 100% STPS6045 (QPL) 100% 75% STPS40100 (QPL) 70%* 75% 100% STPS3045 (NEW) < 50%** 50% 78% 78% 100% STPS20200 (NEW) 50% 75% 75% 100% STPS61170C (NEW) 40% 50% 76% 44% 59% STPS40H100 (NEW) 50% 65% 80% 75% 100% *2 部件通过 75% **未经测试
Diodes Incorporated拥有一个全面的过程来满足监管要求,采取步骤来增加我们的供应链适当措施,并对覆盖的矿物具有内部控制。我们希望我们的供应商能够与我们的流程保持一致,并执行由Incorporated确定和要求的纠正措施。黄金,塔塔勒姆,钨和锡以行业标准的RMI冲突矿物报告模板(CMRT)的形式报告。钴和云母以行业标准RMI扩展矿物报告模板(EMRT)的形式报告。我们至少每年至少每年并定期审查RMI的一致列表,以调查有关这些金属/矿物质的起源的组件和原材料的相关供应商。任何相关状态或其他问题的任何相关更改也可能需要进行其他调查。我们通过公开报告(包括通过我们的网站和SEC文件)披露了实施该政策的进展。
OIDA 版权所有 2002 光电子产业发展协会 本报告中包含的所有数据均为 OIDA 所有,未经光电子产业发展协会事先书面许可,不得以原件或复制形式分发给客户内部组织以外的任何人。 出版者: 光电子产业发展协会 1133 Connecticut Avenue, NW, Suite 600 Washington, DC 20036 电话:(202) 785-4426 传真:(202) 785-4428 互联网:http://www.oida.org 赞助者: 光电子产业发展协会 (OIDA) 国家电气制造商协会 (NEMA) 能源部 – 建筑技术、州和社区计划办公室 (DOE-BTS) 编辑:Jeff Y. Tsao Sandia 国家实验室 P.O. Box 5800 Albuquerque, NM 87185-0601 电话:(505) 844-7092 传真:(505) 844-3211 电子邮件:jytsao@sandia.gov 互联网:http://lighting.sandia.gov
免责声明:1- 为改进产品特性,本文档提供的信息(包括规格和尺寸)如有变更,恕不另行通知。订购前,建议购买者联系 SMC - 桑德斯特微电子(南京)有限公司销售部,获取最新版本的数据表。2- 在需要极高可靠性的情况下(例如用于核电控制、航空航天、交通设备、医疗设备和安全设备),应使用具有安全保证的半导体器件或通过用户的故障安全预防措施或其他安排来确保安全。3- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对用户根据数据表操作设备期间因事故或其他原因造成的任何损害负责。 SMC - 桑德斯特微电子(南京)有限公司对任何知识产权索赔或因应用数据表中描述的信息、产品或电路而导致的任何其他问题不承担任何责任。4- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对因使用超过绝对最大额定值的数值而导致的任何半导体设备故障或任何二次损坏负责。 5- 本数据表不授予任何第三方或 SMC - 桑德斯特微电子(南京)有限公司的任何专利或其他权利。6- 未经 SMC - 桑德斯特微电子(南京)有限公司书面许可,不得以任何形式复制或复印本数据表的全部或部分。7- 本数据表中描述的产品(技术)不得提供给任何其应用目的会妨碍维护国际和平与安全的一方,其直接购买者或任何第三方也不得将其用于此目的。出口这些产品(技术)时,应根据相关法律法规办理必要的手续。
- 高三线态能量主体 (Host(ET )>Dopant(ET )) - 双极电荷传输特性 (载流子平衡) - 抑制降解机制 (TTA, TPA) - 在正/负极化子、单线态/三线态激子下的稳定性
重要通知 亲爱的客户, 2017 年 2 月 7 日,前 NXP 标准产品业务部门更名为 Nexperia 。Nexperia 是业界领先的分立器件、逻辑器件和 PowerMOS 半导体供应商,专注于汽车、工业、计算、消费和可穿戴应用市场。 在仍包含 NXP 或飞利浦半导体参考的数据表和应用说明中,请使用对 Nexperia 的参考,如下所示。 不要使用 http://www.nexperia.com、http://www.philips.com/ 或 http://www.semiconductors.philips.com/。 不要使用 sales.addresses@www.nxp.com 或 sales.addresses@www.semiconductors.philips.com,而要使用 salesaddresses@nexperia.com(电子邮件)。 根据版本,替换每页底部或文档其他位置的版权声明,如下所示: - © NXP N.V.(年份)。保留所有权利或 © Koninklijke Philips Electronics N.V. (年份)。保留所有权利 应替换为: - © Nexperia B.V. (年份)。保留所有权利 。如果您对数据表有任何疑问,请通过电子邮件或电话联系我们最近的销售办事处(详情请发送邮件至 salesaddresses@nexperia.com )。感谢您的合作和理解,
金属卤化物钙钛矿发光二极管 (PeLED) 具有宽色域、高发光效率和低成本合成等特点,是下一代显示应用的有前途的光子源。自 2014 年首次展示室温发射的 PeLED 以来,其性能在几年内迅速提高,引起了学术界和工业界的广泛关注。在这篇综述中,我们讨论了 PeLED 在商业显示应用中的主要技术瓶颈,包括大面积 PeLED 制备、图案化策略和柔性 PeLED 设备。我们回顾了实现这些目标的技术方法,并强调了当前的挑战,同时对这些钙钛矿材料和 PeLED 设备进行了展望,以满足下一代高色纯度全彩显示器市场的需求。
在单层FR-4样式的PCB上,焊接垫的大小是整体热量升压的主要贡献者。两层和4层PCB降低了热电阻。使用热vias是另一个不错的选择。在更高的功率设计中,有时会发现更昂贵的IMS基材。在所有这些设计中,总体热沉积较少依赖于非常大的焊料垫,而小型化是一种选择,并且可以增加功率散发。TSC还推出了2个新软件包-SMPC4.0和TO277A - 带有裸露的垫子。这些软件包为Diodes Inc和Vishay提供了第二来源。裸露的垫子可以大大帮助减少与消散功率相关的板空间。他们还通过降低RTHJ-l来减少TJ,从而提高可靠性。也是一个称为SOD123HE软件包的较小包装。
esearchers from France's Institute of Electronics, Microelectronics and Nanotechnology (IEMN) and Siltronic AG in Germany claim the first demonstration of high-current operation (above 10A) for vertical gallium nitride (GaN)-based devices on silicon substrates [Youssef Hamdaoui et al, IEEE Transactions on Electron Devices, vol.72(2025),否。1(1月),P338]。 团队评论说:“二极管提供了一个未经原理的高州河流电流,直径超过11.5a。 这既归因于反向N-FACE欧姆接触的优化,也归因于实施厚的铜电镀,将硅底物代替为散热器。”这些设备使用了完全垂直的,而不是垂直的结构 “伪垂直”是指所有触点在芯片或晶圆的前面进行的设备。 虽然设备主体中的电流流在此类排列中大约垂直,但电流在N-Contact层中横向流动。 结果是流动效应倾向于降低伪垂直设备的能力处理能力。 完全垂直的结构有望更高的击穿电压,并降低了抗压电压。 在硅底物上生产,而不是碳化硅或散装/独立式gan,也应使GAN设备在低成本应用中更具竞争力。 通过金属有机化学蒸气沉积(MOCVD)制备了两个六英寸的gan/si晶状体(图1)。 一个晶圆具有4.5µm轻轻的N掺杂(N - )漂移层。 另一个晶圆具有一个7.4µ流的漂移区域。1(1月),P338]。团队评论说:“二极管提供了一个未经原理的高州河流电流,直径超过11.5a。这既归因于反向N-FACE欧姆接触的优化,也归因于实施厚的铜电镀,将硅底物代替为散热器。”这些设备使用了完全垂直的,而不是垂直的结构“伪垂直”是指所有触点在芯片或晶圆的前面进行的设备。虽然设备主体中的电流流在此类排列中大约垂直,但电流在N-Contact层中横向流动。结果是流动效应倾向于降低伪垂直设备的能力处理能力。完全垂直的结构有望更高的击穿电压,并降低了抗压电压。在硅底物上生产,而不是碳化硅或散装/独立式gan,也应使GAN设备在低成本应用中更具竞争力。通过金属有机化学蒸气沉积(MOCVD)制备了两个六英寸的gan/si晶状体(图1)。一个晶圆具有4.5µm轻轻的N掺杂(N - )漂移层。另一个晶圆具有一个7.4µ流的漂移区域。根据电化学电容 - 电压(ECV)测量值,漂移层中的硅掺杂浓度为3x10 16 /cm 3,净离子化电子密度为9x10 15 /cm。较厚的漂移层应承受更高的电压,但要以更高的抗性为代价。在弱梁暗场模式下使用透射电子显微镜(TEM)的检查确定螺纹位错密度〜5x10 8 /cm 2。霍尔效应测量值的漂移层迁移率为756cm 2 /v-s。P-I-N二极管是制造的,从用作边缘终止的深斜角台面开始。通过血浆反应离子蚀刻(RIE)和电感耦合等离子体(ICP)蚀刻进行深度蚀刻。边缘终止的目的是将电场散布在交界处,并减少泄漏。
图3.1显示了Gen-3 SIC SBD的原理结构,这是Sanan半导体提供的最新一代SIC二极管。该设备结合了一个金属半导体连接,称为Schottky屏障,而不是表征标准SI二极管的传统P-N结。shottky屏障是在肖特基金属和轻微掺杂的N型外延之间形成的。基板的特征是高度掺杂的N型SIC晶圆,可提供机械稳定性。当应用正向电压时,电子是多数电载体,导致单极电流。此外,由于活动区域中存在几个P+岛,该设备在电涌操作过程中作为PN二极管行为,并产生额外的电流流动。此设计可防止高电压下降,这将带来二极管的破坏。