2021 年 8 月 8 日,美国国家点火装置 (NIF) 创纪录的实验从内爆氘氚 (DT) 胶囊中释放出 1.35MJ 的能量,显示出 0.7 的聚变增益和强劲燃烧的等离子体。虽然这些实验和 NIF 设施并非旨在开发惯性聚变能 (IFE) 的物理学和工程学,但结果对于 IFE 的氘氚惯性约束聚变 (ICF) 物理平台的风险评估具有变革性意义。开发基于 IFE 的发电厂仍是一项十年的努力,我们面前还有许多技术挑战。但有了这种可行性证明和无碳、地理位置独立的发电厂技术的前景,建立对所有高风险和长期发展支持技术的全面研发工作至关重要。要使 IFE 成为有吸引力的能源,需要开发可靠、经济高效的高功率半导体激光器,作为高能聚变驱动激光器经济和技术上可行的泵浦源。
©2021。此手稿版本可在CC-BY-NC-ND 4.0许可下提供http://creativecommons.org/licenses/by-nc-nc-nd/4.0/。
摘要:由于多体效应和较强的电子 - 电子相互作用,准二维材料(例如碳纳米管)中电子带隙和激子结合能的测量很具有挑战性。与众所周知的电子带隙的散装半导体不同,低维半导体中的光学共振由激子主导,使其电子带隙更难测量。在这项工作中,我们使用非理想的P-N二极管测量了聚合物包裹的半导体单壁碳纳米管(S-SWCNTS)网络的电子带隙。我们表明,由于界面陷阱状态的存在,我们的S-SWCNT网络具有较短的少数载体寿命,从而使二极管非理想。我们使用来自这些非理想二极管的生成和重组泄漏电流测量具有不同直径的不同聚合物包裹的S-SWCNT的电子带隙和激子水平:ARC放电(〜1.55 nm),(7,5),(7,5)(0.83 Nm),(0.83 Nm)和(6,5),(6,5,76 nm)(0.76 nm)。我们的价值观与理论预测一致,从而深入了解S-SWCNT网络的基本属性。此处概述的技术展示了一种可靠的策略,可以应用于测量各种纳米级和量子限制的半导体的电子带隙和激子结合能,包括依赖于纳米线的最现代的纳米晶体管。
诺丁汉大学的物理与天文学学院,诺丁汉NG7 2rd,英国B物理学系,国王Khalid Rd的Taibah University-Yanbu科学系。Al Amoedi, 46423, Yanbu El-Bahr, 51000, Saudi Arabia c Department of Intelligent Mechatronics Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea d Laboratory of Semiconducting and Metallic Materials (LMSM), University of Biskra 07000, Algeria e Physics Department, College of科学,乔夫大学,P.O。盒子:2014年,沙特阿拉伯萨卡卡,萨卡卡,物理系,科学与人文学院,萨克拉大学,萨克拉大学,11911年,沙特阿里比亚艾里比亚g物理系,阿尔巴哈大学,65931,65931,萨特阿拉伯,萨特阿拉伯,阿拉伯,大学 Riyadh 11671, Saudi Aribia i Departamento de Engenharia Elétrica, Universidade Federal de São Carlos (UFSCAR), 13560-905 São Carlos, SP, Brazil j Departamento de Física, Universidade Federal de São Carlos (UFSCAR), 13560-905 São Carlos, SP, Brazil,联邦联邦ESãoCarlosK-SãoCarlos物理研究所,圣保罗大学,PO Box 369,SãoCarlos,SéCarlos,SP 13560-970,巴西LectionalmodeciênciasbausbásicasBásicas-faculdadede Zootecnia e Engenharia e Engenharia deAlimentos,sep.5 dea pauliment,sucliendss secepta caudo sesp ando caudo caudo caudo souncyidide caudo caudo, Pirassununga,SP,巴西M微电学学院,西迪安大学,西安,中国北部,电力电子系统中心,弗吉尼亚理工学院和州大学,弗吉尼亚州布莱克斯堡,弗吉尼亚州,弗吉尼亚州24060,美国O物理学,美国联邦大学,欧罗大学联邦大学
2025-02-13本出版物的自算帖子印刷版可在Linköping大学机构存储库(Diva)上获得:https://urn.kb.se/resolve?urn= urn= urn= urn:se:se:liu:diva-2097752
智能家居/城市是物联网的重要体现之一,2 涉及各种类型的电子设备,如智能照明系统、3、4 音频视频设备和安全系统。5 其中,语音激活智能照明可以翻译语音命令,实现对灯光的控制。目前,发光二极管 (LED) 和有机发光二极管 (OLED) 已成为智能家居/城市的流行照明系统,6 而具有可调色发射的有机荧光材料是 OLED、7 生物传感、生物成像、8、9 防伪等潜在应用的重要组成部分。 10 与无机荧光粉相比,有机材料具有精确的分子结构,且分子骨架易于修改,有利于获得具有奇妙光物理性质的各种荧光材料,例如稳定的发光自由基、11 颜色可调的发射,以及单线态裂变、12 室温磷光 13 等。14,15 因此,人们致力于开发新型有机荧光材料,以实现具有先进应用的高科技有机电子器件。此外,已经构建了许多用于多色发射以及白光发射的可调荧光发射有机分子,例如比率响应发光材料、16
FA Viola 博士、B. Brigante、P. Colpani、G. Dell'Erba 博士、Dario Natali 教授、M. Caironi 博士,意大利理工学院纳米科学与技术中心@PoliMi,地址:via Pascoli 70/3,邮编 20133 米兰,意大利。电子邮件:mario.caironi@iit.it Dr. V. Mattoli 微型生物机器人中心,意大利理工学院,viale Rinaldo Piaggio 34, 50125 Pontedera (PI), 意大利 Prof. D. Natali 米兰理工大学电子、信息和生物工程系,via Ponzio 34/5, 20133 米兰,意大利 关键词:印刷电子、RFID、二极管、整流器、有机半导体
在过去的几年中,基于Algan/GAN异质结构的设备因其物质特性而受到了极大的关注,包括宽带,高电子迁移率和二维电子气体(2DEG)的高密度,使其成为高功率和高频应用的最佳选择之一。然而,在散装或表面上存在几个不同性质的陷阱,阻碍了这些设备的性能,其行为的不良变化并限制了其可靠性[1]。捕获gan设备中的效果是显着的,这是两个有趣的原因。首先,它们可以通过捕获电子来耗尽2DEG,从而减少电流。第二,它们的缓慢性质会导致频率分散,从而限制了它们的动态性。最近,已经使用了多种技术来研究捕获机制的行为[2-4],这是由阻抗测量组成的最流行方法之一,允许查找电荷陷阱的激活能(E A)。晶体管中的表面和散装陷阱通常与经典的小信号等效电路并行或串联为RC电路建模,从而捕获设备输出阻抗的频率分散体。为了确定陷阱的参数,必须以广泛的温度(首先进行)进行AC表征,因为陷阱机制的影响在降低温度时会增加,其次,因为人们可以观察到电荷释放的热激活。
er掺杂的Si发光二极管可能在硅光子学和光学量子计算中找到重要的应用。这些二极管在反向偏置时表现出比正向偏置高2个数量级的数量级。但是,这些设备中影响激发的物理学在很大程度上尚未探索。在这项工作中,我们制造了一个ER/O/B CODOP的SI发光二极管,该二极管通过对电子的撞击激发表现出很强的电致发光。建立了一种分析影响 - 激发理论,以预测与实验数据非常吻合的电致发光强度和内部量子效率。从配件中,我们发现可兴奋的ER离子达到了1个创纪录的浓度。8×10 19厘米-3及其45%的通过撞击激发处处于激发状态。 这项工作对基于半导体的稀土元素开发有效的经典和量子光源具有重要意义。通过撞击激发处处于激发状态。这项工作对基于半导体的稀土元素开发有效的经典和量子光源具有重要意义。
作为高清展示领域的后起之秀,研究人员因其宽色范围,1个高色纯度,2个柔性可调性3等,对研究人员进行了广泛研究。自2014年在室温下首次合成的第一颗毛线,因此骨的外部量子效率(EQE)在10年内从不到1%到20%以上。4–6最近,在电荷转运调制,相分布调控和光管理的多重影响下,绿色和红色毛发的均等量超过了25%,而蓝骨的最大eqe也逐渐通过合理设计和有效添加剂的合理设计和结合而逐渐超过18%。9,三种原色的有希望的平衡发展,以及与最先进的有机发光二极管(OLEDS)和量子点发光二极管(QLEDS)等效的工作效率,使得在宽色彩色显示屏和固体照明领域中区分了骨骼。但是,与EQE的快速发展相比,骨的操作稳定性显然落后。高