摘要 - 与传统设计相比,它在产生先进的场合校正和低成本的潜力方面的灵活性,对于紧凑型粒子加速器和医疗应用的gantries,倾斜的余弦(CCT)配置尤其有趣。This article presents the design of a curved demonstrator named Fusillo, a Canted Cosine Theta Nb-Ti dipole magnet that is being developed at CERN, featuring a large aperture of 236 mm, a small bending radius of 1 m, a bending angle of 90 ◦ , and multi-harmonic field correction, with a 3.61 T conductor peak field.我们详细介绍了磁线圈设计,并结合了由弯曲的线圈产生的误差的高阶磁场校正,线圈端处的峰值峰值降低,新的绳索型电缆的开发以及前者的机械设计和前者的开发,从而支持线圈并提供弯曲的形状。我们还介绍了用于限定线圈以前的制造过程,绳索电缆,线圈绕组优化和线圈浸渍系统的第一个结果。
第二次谐波(2Ω)非线性霍尔效应(NLHE)[1,2]可以通过用基于大的基于晶体的同类产品代替古老的基于界面的设备,从而带来逻辑和能量收获技术的新范式[3]。另一方面,NLHE对费米表面的几何形状非常敏感。nhle可以在鞍点[4]和扁平带的位置提供丰富的信息,并直接探测原子上薄的Chern绝缘子中的拓扑相变[5]。在原子薄量子材料的异质结构中获取有关电子特性的信息至关重要,那里的结构对称性工程和热功能可调的复杂的准粒子带共存。在这项工作中,我们在反转对称性的高质量双层石墨烯(BLG)上进行了实验研究,这是掺杂(n)介电位移的函数(d)和温度(t)。我们的结果揭示了不可预见的外在散射和界面应变诱导的内在浆果曲率偶极子(BCD)的二二,其符号和幅度可以通过N和/或D在BLG的低能带边缘附近调节。远离带边缘,观察到NLHE由外部散射占主导地位。BLG中的第二个谐波产生效率V XX(Y)2Ω /VXXΩ2为〜50 V -1,在所有可伸缩材料中最高。此外,v xx(y)2Ω的符号变化的n -d分散轨迹轨迹在BLG中带走了与拓扑相关的LIFSHITTINTIONS。我们的工作将BLG建立为一个高度可调的平台,以生成NLHE,进而探测双层石墨烯中引人入胜的低能电子结构。
本报告是作为由美国政府机构赞助的工作的帐户准备的。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。 以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。 本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
(c)当我们将气球充气至其原始半径的两倍时,表面积将增加四倍。列出的量会发生什么变化?电荷不变。与球体半径成反比的电位减小到其值的一半。现在,相同的电荷分布在原始表面积的四倍上,使表面电荷密度降低到原始值的四分之一。与表面电荷密度成正比的电场减小了相同的倍数。
作为图像处理的一种重要方法,图像差异可以使目标的边缘检测能够实现对象特征和信息压缩的识别,并且可以通过光学信息技术来提高计算速度。传统的光学图像差异方法主要依赖于使用经典4F系统的空间光谱过滤,而某些工作则集中在1D或单向之间。直到近年来,跨境的快速发展才促进了图像不同的方法。在这项工作中,基于硅空心砖电介质谐振元脉冲的发射光场演示了拉普拉斯操作设备。可以通过刺激元图支持的角度选择性的环形偶极子(TD)共振来获得光拉拉普拉斯操作所需的光传递函数(OTF)。这个空心的硅砖块不仅实现2D二阶检测,而且具有接近0.4的数值光圈,并且可以直接集成成像系统,并且可以直接集成。此类MetadeVice可能可能应用于光学传感,显微镜,机器视觉,生物医学成像等的领域。
使用传统的电子偶极自旋共振 (EDSR) 实现自旋量子比特的高保真控制需要约 1 mTnm −1 的大磁场梯度(这也会将量子比特与电荷噪声耦合)和 1 mV 量级的大驱动幅度。翻转模式是驱动双量子点中电子 EDSR 的另一种方法,其中两个点之间的大位移提高了驱动效率。我们建议在强驱动范围内操作翻转模式,以充分利用两个点之间的磁场差异。在模拟中,降低的所需磁场梯度将电荷噪声的保真贡献抑制了两个数量级以上,同时提供高达 60 MHz 的拉比频率。然而,硅中导带的近简并引入了谷自由度,这会降低强驱动模式的性能。这就需要进行依赖于谷值的脉冲优化,并且使强驱动机制的操作变得值得怀疑。
摘要 - 在Cern,Centro Nazionale di Adroterapia Oncologica(CNAO),Istituto Nazionale nazionale di Fisica fisica Nuce(INFN)和Medaustron之间的合作中,正在研究新一代用于离子疗法应用的超导磁铁。这些新离子治疗设施的最关键方面之一是优化可旋转的龙门,以从所有方向对患者进行治疗。在这种情况下,INFN通过开发超导离子龙门(SIG)项目来参与努力。该程序旨在设计,制造和测试一个超导的NB-TI,单个光圈,Cos-Theta偶极子,孔径为80 mm,曲率明显的曲率为1.65 m。这款磁铁对于设计尖端,重量优化的430 MeV/U碳离子龙门的设计至关重要。该项目的目的是通过绕组和组装30°角扇形的简短演示器,长度约1.3 m来证明这种chal磁铁的可行性,然后,可能是全长45°模型。磁铁将在Infn Laboratorio Acceleratori ESuperConduttivitàplippleta(LASA)组装和测试。在此贡献中,提出了机械结构的初步2D设计。磁铁特征
背景。中子星被超强电磁场有效加速的超相对论粒子所包围。这些粒子通过曲率、同步加速器和逆康普顿辐射大量发射高能光子。然而,到目前为止,还没有任何数值模拟能够处理这种极端情况,即非常高的洛伦兹因子和接近甚至超过量子临界极限 4.4 × 109T 的磁场强度。目的。本文旨在研究旋转磁偶极子中的粒子加速和辐射反应衰减,其实际场强为 105 T 至 1010 T,这是毫秒和年轻脉冲星以及磁星的典型场强。方法。为此,我们在简化的 Landau-Lifshitz 近似中实现了一个精确的分析粒子推动器,包括辐射反应,其中假设电磁场在一个时间步长积分期间在时间上恒定而在空间上均匀。使用速度 Verlet 方法执行位置更新。我们针对时间独立的背景电磁场(如交叉电场和磁场中的电漂移以及偶极子中的磁漂移和镜像运动)对我们的算法进行了广泛的测试。最后,我们将其应用于真实的中子星环境。结果。我们研究了粒子加速以及辐射反应对插入毫秒脉冲星、年轻脉冲星和磁星周围的电子、质子和铁核的影响,并与没有辐射反应的情况进行了比较。我们发现最大洛伦兹因子取决于粒子种类,但与中子星类型的影响很小。电子的能量高达 γ e ≈ 10 8 − 10 9 ,而质子的能量高达 γ p ≈ 10 5 − 10 6 ,铁的能量高达 γ ≈ 10 4 − 10 5 。虽然质子和铁不受辐射反应的影响,但电子的速度却急剧下降,使其最大洛伦兹因子降低了四个数量级。我们还发现,在几乎所有情况下,辐射反应极限轨迹都与简化的朗道-利夫希茨近似非常吻合。
被困的离子量表已证明了所有量子系统的最高量子操作。1-4因此,如果可以满足整合和扩展协会技术的挑战,则他们将有望成为可扩展的量子信息平台的候选人。这些挑战中的主要是,这种激光的整合不仅是冷却离子所需的,而且通常用于操纵Qubits。目前,正在提出两种主要方法。首先,如果可以将硅光子学中所示的功能扩展到与与原子离子量子量所需的可见和紫外线波长相兼容的材料,则可以提供可扩展的手段来传递必要的激光5,6。7秒,正在探索几种用于无激光处理原子量子A的方案,其中涉及与强静电磁场梯度配对的微波场,8-10 A Microwave磁场梯度,11-13微波磁场梯度,11-13微波磁场梯度梯度,14或接近Motiention Motional Mode频率。15,16集成光学和微波控制都需要在离子陷阱制造中的进步才能真正扩展。最近的提案17概述了第三个
当前最先进的量子点发光二极管的外部量子效率受限于较低的光子输出耦合效率。采用纳米棒、纳米片和点盘纳米晶体等取向纳米结构的发光二极管有利于光子输出耦合;然而,它们的内部量子效率往往会受到影响,因此实现净增益一直颇具挑战性。本文报道了各向同性形状的量子点,其特征是由纤锌矿相和闪锌矿相组成的混合晶体结构。纤锌矿相促进偶极-偶极相互作用,从而使溶液处理薄膜中的量子点定向,而闪锌矿相则有助于提升电子态简并度,从而实现定向光发射。这些特性的结合在不影响内部量子效率的情况下改善了光子输出耦合。制备的发光二极管的外部量子效率为 35.6%,并且可以在初始亮度为 1,000 cd m –2 的情况下连续运行 4.5 年,性能损失最小约为 5%。