神经元产生电信号,通过突触传输到其他细胞。首先,动作电位 (AP) 到达突触间隙(图 1 中的步骤 1),在那里它将通过神经递质传输化学信息(图 1 中的步骤 2),从而产生突触后电位 (PSP) 和局部电流(图 1 中的步骤 3)。PSP 将产生电流接收器并传播直到细胞体以产生电流源(图 1 中的步骤 4)。因此,PSP 会产生一个由负极(即接收器)和正极(即源)组成的电偶极子。该偶极子将产生初级(细胞内)电流和次级(细胞外)电流。M/EEG 信号来自突触后电位。更具体地说,M/EEG 信号来自大量同步神经元活动的空间和时间总和。但 MEG 和 EEG 之间存在显著差异。首先,就信号本身而言,MEG 信号主要由树突水平的 PSP 产生的细胞内电流引起,细胞外电流较少;EEG 信号对应于电位差,主要由细胞外电流引起。其次,就对偶极子方向的敏感性而言,EEG 对径向电流(位于脑回水平的活动)和切向电流(在脑沟内产生)都很敏感,尽管它具有
摘要:我们在实验中证明了在Sili-ConNanodisk阵列中对连续体(A-BICS)中意外结合状态的调整。A-BIC出现了多物的破坏性干扰,这些干扰是平面电偶极子和平面磁性偶极子,以及弱电四极杆和磁性四极杆。我们进一步表明,可以通过改变纳米风险尺寸或晶格周期来方便地调节A-BIC的光谱和角度位置。非常明显,角度可以调节到0°,这表明A-BIC从OFF-γ-BIC到AT-γ-BIC进行了有趣的过渡。我们的工作为具有高质量因素的光捕获提供了一种新的策略,可调节的A-BIC可以在低阈值激光,增强的非线性光学和光学传感中找到潜在的应用。
Abbreviations ADB Asian Development Bank AR4 Fourth Assessment Report (to the IPCC) AR5 Fifth Assessment Report (to the IPCC) CCWG Climate Change Working Group (CCWG) CCA Climate Change Adaptation DRM Disaster Risk Management DRR Disaster Risk Reduction ENSO El Niño Southern Oscillation FAO Food and Agriculture Organization FBO Faith Based Organization GCF Green Climate Fund GCM Global Climate Model GEF Global Environmental Facility GoDRTL Government of the Democratic Republic of Timor-Leste HDI Human Development Index HNAP Health National Adaptation Plan HSO Human Security Objective IMCB Inter-Ministerial Coordination Body INC Initial National Communication (to the UNFCCC) INDC Intended Nationally Determined Contribution IOD Indian Ocean Dipole IPCC Intergovernmental Panel on Climate Change IVA Integrated Vulnerability Assessment IWRM Integrated Water Resource Management IOD Indian Ocean Dipole LDC Least Developed Country LEG Least Developed Countries Expert Group MAF Ministry of Agriculture and Fisheries MCIE Ministry of Commerce, Industry, and Environment M&E Monitoring and Evaluation MERL Monitoring, evaluation, reporting and learning MJO Madden-Julien Oscillation MoE Ministry of Education MoF Ministry of Finance MoH Ministry of Health MoI Ministry of Interior MoPW Ministry of Public Works MSME Micro-, Small-, and Medium-sized Enterprises MUPD Ministry of Urban Planning and Development MSSI Ministry of Social Solidarity and Inclusion MTC Ministry of Transport and Communication NAP National Adaptation Plan NAPA National Adaptation Programme of Action NBSAP National Biodiversity Strategy and Action Plan 2011-2020 NCCP National Climate Change Policy NDA National Designated Authority (for the GCF) NDCC National Directorate for Climate Change
• 太阳黑子每天都会提供视觉效果 • “活跃区域”的强磁性 • 11 年的活动周期 • 中低纬度带的形成 • “偶极子”场的 22 年极性周期
摘要:由于各个单元之间的相互作用,可以从有序的发射器集合中出现集体光学性质。卤化物钙钛矿纳米晶体的超晶格表现出集体光发射,受偶极子 - 同时激发的纳米晶体之间的偶极子相互作用。与未偶联的纳米晶体的发射相比,这种耦合改变了发射能和速率。我们证明了量子限制如何控制合奏中纳米晶体之间耦合的性质。通过控制纳米晶体的大小或对BOHR半径的组成控制来改变限制的程度。在由弱受限制的纳米晶体制成的超晶格中,集体发射以更快的发射速率进行红移,显示了超荧光的关键特征。相比之下,更强的量子限制纳米晶体的集体发射以较慢的发射速率进行蓝色。两种类型的集体发射都表现出相关的多光子发射爆发,显示出不同的光子束发射统计。量子限制改变了纳米晶体内过渡偶极子的首选比对,并切换邻居之间的相对偶极子方向,从而产生了相反的集体光学行为。我们的结果将这些集体效应扩展到相对较高的温度,并更好地了解固态处的激子相互作用和集体排放现象。关键字:纳米晶体,铅卤化物钙钛矿,超晶格,纳米晶体耦合,超荧光,量子限制T
除了高功率 TWT 监视器外,消声室中还有 3 个功率监视器。其中两个,监视器 #1(标准增益喇叭)和监视器 #2(套筒偶极子),连接到机架号 3 中的 HP431C 功率计。这两个监视器
耦合模式 电感 电感 电磁反向散射 工作频率 125kHz – 134kHz 13.56MHz 860MHz – 960MHz 天线线圈 线圈偶极子 最大工作距离可达 1m 附近:可达 1m 近距离:可达 10cm
本文介绍了用于 5G 端射应用的 SICL 馈电宽带 MIMO 天线阵列。阵列中的辐射元件是一种改进的偶极天线,倾斜 ±45 度,以避免阵列配置中连续元件之间的重叠。一个臂放在顶部,而另一个臂放在底部基板上,分别由 SICL 线的顶部和中间板(使用馈电通孔)馈电。偶极天线臂的上下排列使阵列尺寸更加紧凑。SICL 技术的另一个优势是,当一个端口被激励时,可以减少另一个端口的耦合,从而使用 SICL 实现高隔离度。建议采用四元件 MIMO 天线阵列实现 360 度方位覆盖,增益为 6 dBi,阻抗带宽为 5.6 GHz,28 GHz 时交叉极化水平低于 13.6 dB。