摘要:将序列变化与表型效应联系起来对于有效利用大型基因组数据集至关重要。在这里,我们提出了一种新的方法,将定向进化与蛋白质语言建模相结合,以表征水稻免疫受体的自然发展变体。使用高通量定向进化,我们设计了水稻免疫受体PIK-1,以结合和识别真菌蛋白AVR-PIKC和AVR-PIKF,它们通过当前特征的PIK-1等位基因避免检测。在此数据上对蛋白质语言模型进行了微调,以将序列变化与配体结合行为相关联。然后使用此建模来表征3,000个水稻基因组项目数据集中发现的PIK-1变体。两种变体因与AVR-PIKC的结合高度评分,并且体外分析证实了它们在野生型PIK-1受体上的提高配体结合。总体而言,这种机器学习方法确定了水稻中有希望的疾病抗性来源,并显示了探索其他感兴趣蛋白质的表型变化的潜在效用。
对映选择性金 (I) 催化的挑战显然与活性配合物的线性几何形状有关,并且在许多情况下与对映决定步骤的外层机制有关。尽管如此,近年来可以通过空间拥挤的配体(其形成嵌入远端活性位点的深手性口袋)、双功能膦或可能通过亲金相互作用形成的双核配合物实现高对映选择性。1 另外,Toste 2 引入了手性反离子策略,其中值得注意的是 BINOL 衍生的磷酸盐在涉及阳离子金中间体的反应中充当手性诱导剂。尽管对于磷酸盐阴离子的确切机制和作用存在一些不确定性,但该策略已显示出突出的潜力,并引发了金 3,4 和其他过渡金属催化的重大进展。 5,6 在金 (I) 催化中,首次公开的分子内氢烷氧基化、氢羧化和氢胺化反应迄今为止仍然是反离子策略的主要应用领域,尽管该方法在理论上应该适用于更广泛的反应。值得注意的是,所有涉及对映体决定步骤中紧密离子对的反应都可能适用,包括那些通过碳阳离子中间体与远程中性金 (I) 单元进行的反应。这种情况可以用图 1.1 中的串联杂环化-亲核加成反应来适当地代表。7 在这种情况下以及其他情况下,手性反离子的立体化学控制受到磷酸盐-碳阳离子对的空间排列不明确和灵活的影响。我们认为可以通过以某种方式将磷酸盐反离子束缚在阳离子金复合物上来克服这个缺点(图 1.2b)。将磷酸单元连接到金配体的共价系链可能为关键中间体提供足够的几何约束和分子组织,从而实现有效的立体化学控制。如果正确实施,这种方法可能会突破对映选择性金催化以及更广泛地说对映选择性过渡金属催化中“离子配对策略”的极限。之前已经报道过在分子内嵌入阴离子的过渡金属配合物。然而在这些
摘要。在本文中,提出了定向能量沉积过程中晶粒生长的快速模拟。控制微观结构确实对于获得所需的宏观行为至关重要。我们对温度的快速宏观模拟进行了晶粒生长的占主导地位。所提出的方法重新提出了最新贡献的耦合:(i)DED中的温度模拟,(ii)基于定向的镶嵌更新方法的晶粒生长模型的介质模型,以及(iii)晶粒生长的晶粒晶粒生长模型。一般策略是在整个过程中计算温度场作为时间的函数。在本节目中未解决初始结晶,并引入了任意的初始微观结构以测试模型。计算了由于热循环而引起的晶粒结构的随机演变,并且在整个部分中都遵循了最终的晶粒结构统计。所提出的模型非常快地可以启用大零件的模拟,并且可以执行参数研究或优化循环以调整过程参数。
本文旨在评估一种自热测试方法,用于表征单道厚度增材制造试件的疲劳性能。它还评估了微观结构取向相对于载荷方向对耗散行为和微裂纹起始的影响。所研究的 316L 不锈钢试件采用定向能量沉积技术制造,有两种配置:(i) 完全打印试件(2 个取向)和 (ii) 修复试件。本文首先介绍形态学和晶体学纹理分析,其次介绍一系列循环载荷下的自热测试。微观结构分析显示,晶粒伸长,其尺寸、形状和优选取向由工艺参数控制。循环拉伸载荷下的自热测量证明,可以通过红外测量对小规模、薄试件进行耗散估算。自热曲线可以成功地用 Munier 模型表示。此外,可以建立打印参数和自热结果之间的几种联系。例如,连续沉积层之间的垂直增量越小,平均
a 张振浩博士、Nazarii Sabat 博士、Angela Marinetti 博士、Xavier Guinchard 博士、巴黎萨克雷大学、法国国家科学研究中心、自然化学研究所、UPR 2301, 91198、Gif-sur-Yvette、法国。电子邮件:angela.marinetti@cnrs.fr; xavier.guinchard@cnrs.fr b 张振浩博士、Gilles Frison 博士 LCM、CNRS、巴黎综合理工学院、巴黎综合理工学院、91128 Palaiseau、法国。 c Dr Gilles Frison 索邦大学,法国国家科学研究院,理论化学实验室,75005 巴黎,法国 CPA-Phos 系列新型手性磷酸官能化膦的金(I)配合物可使醛、羟胺和环状炔烯酮之间发生对映选择性多组分反应,生成 3,4-二氢-1H-呋喃并[3,4-d][1,2]恶嗪。这是金(I)催化下高度对映选择性多组分反应的第一个例子。反应在低催化剂负载下进行,产率高,总非对映选择性和对映体过量高达 99%。可应用无银条件。该方法适用范围非常广泛,既适用于脂肪族和芳香族醛和羟胺,也适用于各种环状炔烯酮,以及炔烯酮衍生的肟。据报道,DFT 计算启发了对映体控制途径。
。CC-BY-NC-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 10 月 16 日发布。;https://doi.org/10.1101/2022.10.16.512417 doi:bioRxiv 预印本
至少 20 nt 长度的探针已经过测试。探针可以设计为 3´ 或 5´ 生物素/脱硫生物素亲和基团,用于链霉亲和素富集 (NEB #S1421)。为获得最佳效果,受保护的 DNA:RNA 杂交区域应为 4 或 5 个核苷酸
分子表示学习(MRL)长期以来在药物发现和材料科学领域至关重要,并且由于自然语言处理(NLP)和图形神经网络(GNN)的发展,它取得了重大进展。nlp将分子视为一维顺序令牌,而GNN则将它们视为二维拓扑图。基于通过不同的消息传递算法,GNN在检测化学环境和预测分子特性方面具有各种性能。在此,我们提出了定向的图形注意力网络(D-GAT):具有定向键的表达性GNN。我们策略成功的关键是按照指示图处理分子图,并通过缩放的点 - 产物注意机制来更新键状态和原子状态。这使模型可以更好地捕获分子图的子结构,即官能团。与其他GNN或消息传递神经网络(MPNN)相比,D-Gats的表现优于15个重要分子属性预测基准中的13个。
近年来,越来越多的人被诊断患有 ADHD,这是一种神经发育障碍,其特征是注意力不集中、多动和冲动(例如,Garfield 等人,2012 年)。尽管 ADHD 通常在儿童时期首次被诊断出来,但症状往往持续到成年期(Biederman、Petty、Evans、Small 和 Faraone,2010 年)。这种疾病可能会给人们的生活带来相当大的问题:ADHD 与较低的学业和职业成功有关,并且患抑郁症、焦虑症和成瘾的风险增加(Biederman 等人,2006 年;Faraone 等人,2000 年)。然而,在需要人们发挥创造力的情况下,ADHD 可能具有某些好处。先前的研究表明,创造力,即产生新颖而有用的想法的能力(Amabile,1996),受益于注意力分散和忽略环境中与任务无关的刺激的能力降低(Baird 等人,2012;Carson、Peterson 和 Higgins,2003)。在创造性任务期间,对与任务无关的信息进行分散处理可能会激活不常见的联想,从而产生原始的信息组合。此外,精力充沛、冲动和敢于冒险似乎有助于创造力(Barron 和 Harrington,1981;Feist,1998)。因此,容易分心、多动和冲动的人,例如患有 ADHD 的人,可能比没有这些症状的人更有创造力。事实上,研究表明,患有 ADHD 的成年人(与对照组相比),以及
这项研究研究了通过定向能量沉积(DED)处理的基于Co-Ni-al-W-TA-TI-CRγ/γ'基于钴的凝固路径中出现的隔离和降水。观察结果揭示了添加剂制造过程中液体中划分的特征元素。由于这种微层次,发生复杂的多相沉淀,并且在由DED制造的基于钴的超合金中鉴定并表征了各种沉淀物。扫描电子显微镜(SEM)和透射电子显微镜(TEM)用于研究在实用的显微组织中检测到的各个阶段的空间分布和性质。能量色散X射线光谱法(EDS),波长色散X射线光谱法(WDS)和电子能量损耗光谱(EEL)与衍射模式的精细分析相结合,以识别装饰互构成区域的不同阶段。这些特征允许鉴定不同的亚微音沉淀:Al 2 O 3,(Ta,ti)(n,c),HFO 2,Cr 3 B 2和(Ti,Ti,Zr,Hf)2 Sc。根据实验结果讨论凝固序列。这项工作提供了对固化隔离和在DED处理的基于钴的超合金中的第二相降水之间相互作用的首次了解。关键字γ/γ'Superaly合金;增材制造;第二相降水; tem
