图2:X射线晶体学通过X射线晶体屏幕。(a)TRF1 TRFH单体的卡通表示,其1286 PANDDA事件被叠加为蓝色球体。每个循环数代表pandda配体结合位点。TIN2 TBM结合位点,站点6,以绿色突出显示。(b)19精制和叠加的TRF1 TRFH结构的卡通表示,其命中片段结合在TIN2 TBM结合位点中。(c)与B中相同的结构,但没有结合的片段命中,显示了与片段结合的四个关键残基的相对位置(R102,E106,Q127,R131)。(d)TRF1 TRFH -TIN2 TBM晶体结构(PDB 3BQO)13的卡通表示,其中四个残基与碎片结合在一起,显示为蓝色棒,而TIN2 TBM显示为洋红色棒。(e)TRF1 TRFH的R131与命中片段的酰胺组之间的H-键的示例(3)。(f)命中片段(6)的示例,其中一个halide组埋在TRF1 TRFH的亮氨酸袋中,用TIN2 TBM肽(PDB 3BQO)13叠加为卡通和L260。(g)TRF1 TRFH的R131与命中片段的芳基(13)之间的阳离子-PI相互作用的示例。(H)Xchem的晶体结构命中片段5与TRF1 TRFH结合,相邻的不对称单元以灰色显示。
国际计算机工程技术杂志(IJCET)第16卷,第1期,Jan-Feb 2025,pp。3301-3315,文章ID:IJCET_16_01_230在线可在https://iaeme.com/home/issue/issue/ijcet?volume=16&issue = 1 ISSN印刷:0976-6367; ISSN在线:0976-6375;期刊ID:5751-5249影响因子(2025):18.59(基于Google Scholar引用)doi:https://doi.org/10.34218/ijcet_16_01_230©iaeme Publication
1 美国伊利诺伊州莱蒙特阿贡国家实验室 2 谷歌公司,美国华盛顿州西雅图 3 美国北卡罗来纳州达勒姆杜克大学电气与计算机工程系 4 美国北卡罗来纳州达勒姆杜克大学化学系 5 美国北卡罗来纳州达勒姆杜克大学物理系 6 美国北卡罗来纳州达勒姆杜克大学计算机科学系和数学系 7 美国科罗拉多州戈尔登科罗拉多矿业学院物理系 8 美国伊利诺伊州芝加哥芝加哥大学计算机科学系 9 美国伊利诺伊州厄巴纳-香槟市伊利诺伊大学物理系和 IQUIST 10 美国马萨诸塞州剑桥麻省理工学院电气工程与计算机科学系 11 谷歌公司,美国加利福尼亚州威尼斯 12 麻省理工学院物理系,美国马萨诸塞州剑桥 13 美国马里兰州帕克分校马里兰大学联合量子研究所、量子信息与计算机科学联合中心和物理系 14美国国家标准与技术研究所,美国马里兰州盖瑟斯堡 15 普林斯顿大学电气工程系,美国新泽西州普林斯顿 16 IonQ, Inc.,美国马里兰州学院公园 17 米德尔伯里学院计算机科学系,美国佛蒙特州米德尔伯里 18 L3Harris Technologies,美国佛罗里达州墨尔本 19 麻省理工学院机械工程系,美国马萨诸塞州剑桥 20 哈佛大学物理系,美国马萨诸塞州剑桥 21 IBM TJ Watson 研究中心,美国纽约约克敦高地 22 桑迪亚国家实验室,美国新墨西哥州阿尔伯克基 23 加州理工学院量子信息与物质研究所和沃尔特伯克理论物理研究所,美国加利福尼亚州帕萨迪纳 24 Microsoft Quantum,美国华盛顿州雷德蒙德 25 华盛顿大学核理论研究所和物理系,美国华盛顿州西雅图
这项新研究支持使用牡蛎中的天然产物治疗细菌感染的可能性。重要的是,牡蛎血淋巴蛋白对人类肺细胞无毒,这表明应该可以优化安全有效的剂量。这项研究由科学与工程学院的 Kirsten Benkendorff 教授指导。
此前,我们已经生成了肝脏和其他 45 种主要人体组织基因共表达网络 (CN),并确定了丙酮酸激酶 L/R (PKLR) 作为靶点,抑制该酶可选择性抑制肝脏中的 DNL (Lee et al., 2017)。丙酮酸激酶是糖酵解中的关键酶,PKLR 基因编码该酶的肝脏 (PKL) 和红细胞 (PKR) 同工型,并催化磷酸烯醇式丙酮酸和 ADP 生成丙酮酸和 ATP。PKL 和 PKR 同工型分别在肝脏和红细胞中特异表达。一项独立的小鼠群体研究也证实了 PKLR 在 NAFLD 发展中的驱动作用 (Chella Krishnan et al., 2018)。最近,我们在 HepG2 细胞中进行了抑制和过表达 PKLR 的体外实验,发现 PKLR 的表达与 FASN 、 DNL 、 TAG 水平的表达以及细胞生长呈显著正相关 (Liu et al., 2019)。基于这些发现,综合分析表明,可以针对 PKLR 开发一种对其他人体组织副作用最小的 NAFLD 治疗策略。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
建立肽序列与原纤维形成之间的基本关系对于理解蛋白质错误折叠过程和指导生物材料设计至关重要。在这里,我们将全原子分子动力学(MD)模拟与人工intel-ligence(AI)相结合,以研究短肽序列排列的细微变化如何影响其形成原纤维的倾向。我们的结果表明,疏水残基的分布和电荷簇的分布很小,可以显着影响成核速率和跨β结构的稳定性。为了快速扩展此分析,我们开发了一个主动学习 - 增强的框架 - 用于分子动力学的机器学习(ML4MD),从而根据MD衍生的聚合数据迭代地完善了其预测。ML4MD有效筛选了许多肽排列,并指导发现先前未识别的原纤维式序列,从而在接收器操作特征(ROC)曲线(AUC)下达到0.939的接收器下方。总体而言,ML4MD通过将详细的原子模拟与快速和高敏锐的ML预测整合在一起,简化了淀粉样蛋白样肽的合理设计。
►本演讲包括某些前瞻性语句。前瞻性陈述包括对未来收益或财务状况或绩效的指示,指导或前景,包括从生产目标中得出的预测财务信息。前瞻性陈述是预测,并且受风险,不确定性和假设的约束,这些陈述超出了半人值金属的控制。这些风险,不确定性和假设包括各个国家和地区的商品价格,货币波动,经济和金融市场状况,环境风险以及立法,财政或监管发展,政治风险,项目延迟或进步,批准和成本估算。实际值,结果或事件可能与本介绍中表示或暗示的值大不相同。鉴于这些不确定性,警告读者不要过分依赖前瞻性陈述。本演示文稿中的任何前瞻性陈述仅在本演讲的发行日期。遵守适用法律和ASX上市规则的任何持续义务,Centaurus Metals不承担任何义务,以更新或修改本演示文稿中的任何信息或任何前瞻性陈述,或任何此类前瞻性陈述所基于的事件,条件或情况中的任何更改。
►本演讲包括某些前瞻性语句。前瞻性陈述包括对未来收益或财务状况或绩效的指示,指导或前景,包括从生产目标中得出的预测财务信息。前瞻性陈述是预测,并且受风险,不确定性和假设的约束,这些陈述超出了半人值金属的控制。这些风险,不确定性和假设包括各个国家和地区的商品价格,货币波动,经济和金融市场状况,环境风险以及立法,财政或监管发展,政治风险,项目延迟或进步,批准和成本估算。实际值,结果或事件可能与本介绍中表示或暗示的值大不相同。鉴于这些不确定性,警告读者不要过分依赖前瞻性陈述。本演示文稿中的任何前瞻性陈述仅在本演讲的发行日期。遵守适用法律和ASX上市规则的任何持续义务,Centaurus Metals不承担任何义务,以更新或修改本演示文稿中的任何信息或任何前瞻性陈述,或任何此类前瞻性陈述所基于的事件,条件或情况中的任何更改。
本小册子中解释的好处是由Discovery Health Medical计划提供的,注册号为1125,由Discovery Health(PTY)Ltd管理,注册号,1997/013480/07,授权的金融服务提供商。本小册子只是发现健康医疗计划计划的主要好处和特征的摘要,但要获得医学计划理事会的批准。在所有情况下,发现健康医疗计划规则都占上风。请咨询www.discovery.co.za上的计划规则。本小册子在福利,成员,付款或保险的背景下提到“我们”,“我们”是指发现健康医疗计划。我们正在不断地改善与您的沟通。您可以在www.discovery.co.za上找到本指南的最新版本以及详细的好处信息。Discovery Health应用程序是通过Discovery Health(PTY)Ltd带给您的,注册号1997/013480/07,授权的金融服务提供商兼医疗计划管理员。