散发性克鲁特兹菲尔德 - 贾科布疾病(SCJD)是最常见的人类prion病,当时会发生细胞prion蛋白(PRP C)自发地折叠并聚集成prion族原纤维,导致致命的Neu rodegeneration中的原因。在SCJD的全基因组关联研究中,我们最近确定了基因STX6和周围周围的风险变异,有证据表明与疾病相关的大脑区域中STX6表达的因果关系增加。 STX6编码Syntaxin -6,这是一种主要参与早期内体的核心蛋白,用于反式 - 高尔基网络恢复级传输。 在这里,我们通过经典的Prion传播研究研究了STX6的遗传耗竭的小鼠模型,并通过经典的Prion传播研究研究了STX6表达在小鼠Prion疾病中的因果作用,评估了纯合和杂合Syntaxin-6敲除疾病孵化周期以及prion孵化的神经病理学的影响。 接种RML Prions后,在STX6 - / - 和STX6 + / < / div>中的孵育周期在SCJD的全基因组关联研究中,我们最近确定了基因STX6和周围周围的风险变异,有证据表明与疾病相关的大脑区域中STX6表达的因果关系增加。STX6编码Syntaxin -6,这是一种主要参与早期内体的核心蛋白,用于反式 - 高尔基网络恢复级传输。在这里,我们通过经典的Prion传播研究研究了STX6的遗传耗竭的小鼠模型,并通过经典的Prion传播研究研究了STX6表达在小鼠Prion疾病中的因果作用,评估了纯合和杂合Syntaxin-6敲除疾病孵化周期以及prion孵化的神经病理学的影响。接种RML Prions后,在STX6 - / - 和STX6 + / < / div>中的孵育周期
肽疗法的领域始于1922年,首次从动物胰腺中提取的胰岛素首次医学使用 - 彻底改变了1型糖尿病的治疗(图1)。在合成产生的肽激素(即催产素和加压素)进入诊所之前已过去的四十年。工业团体,例如CIBA的Robert Schwyzer和Sandoz的Charles Huguenin进入了该领域,并增加了对肽作为治疗学的商业兴趣。当时,通过溶液相化学的合成需要数月的工作,并且在1963年发明了固相肽合成(SPP)(参考文献1),结合纯化方法(例如高性能液相色谱法)的开发,以吸引制药行业的大大关注。很快,肽作为关键生物学介体的重要性,以及它们的显着效力,选择性和低毒性。同时确定了它们的局限性,包括低口服生物利用度,低血浆稳定性和较短的循环时间。这些发展发生在批准时的黄金时代(1970年至1980年代)的小分子药物
PROTAC 已成为一类新型药物,它可以通过劫持泛素蛋白酶体系统来靶向“不可成药”的蛋白质组。尽管 PROTAC 取得了成功,但目前大多数 PROTAC 都与有限数量的 E3 连接酶相互作用,阻碍了它们扩展到许多具有挑战性的治疗用途。目前,PROTAC 药物发现严重依赖于传统的蛋白质印迹和报告基因检测,这两种方法分别不敏感且容易出现伪影。无需外部标签即可监测 PROTAC 的真实功能(即靶标在生理表达水平上的泛素化和随后的降解)的新型可靠方法对于加速 PROTAC 发现过程和解决许多未满足的治疗领域至关重要。在本研究中,我们开发了一种新的高通量筛选技术,使用“TUBE”作为泛素结合实体,以出色的灵敏度监测 PROTAC 介导的天然靶蛋白多泛素化。作为概念验证,包括 BRD3、Aurora A 激酶和 KRAS 在内的靶标被用于证明泛素化动力学可以可靠地确定具有可变配体和接头的 PROTAC 的等级效力。PROTAC 处理的细胞裂解物具有最高水平的内源性靶蛋白泛素化 - 称为“Ub Max” - 与从传统蛋白质印迹获得的 DC 50 值显示出极好的相关性,并具有高通量、提供更高的灵敏度和减少技术错误的额外优势。© 2022 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
评估分子和材料特性是材料和化学信息学中的关键。4,5 机器学习中已经开发出各种监督模型,通过学习解释变量的统计关系来训练它们,以根据解释变量预测特定特性。5 有许多监督模型,以线性算法、支持向量机和基于决策树的集成为代表。5 此外,最近的神经网络深度学习技术通过大幅增加模型复杂度突破了预测精度的极限。6 在化学和材料领域,适当使用此类监督模型可以预测多种材料和化学特性,例如电导率、7,8 能级、9 光转换效率 10 和毒性。4 它们的预测精度可以超过人类专家和传统的计算模拟,逐渐形成面向数据的科学的坚实平台。4,5,8 – 10
Informatica (NYSE: INFA) 是企业 AI 驱动的云数据管理领域的领导者,通过帮助企业实现其最关键资产的变革力量,将数据和 AI 带入生活。我们创建了一种新的软件类别,即 Informatica Intelligent Data Management Cloud™ (IDMC),它由 AI 和端到端数据管理平台提供支持,可连接、管理和统一几乎所有多云混合系统中的数据,实现数据民主化并帮助企业实现业务战略现代化。大约 100 个国家/地区的客户和超过 80 家财富 100 强企业依靠 Informatica 推动数据主导的数字化转型。Informatica。数据和 AI 焕发活力的地方。™
CRISPR相关的TN7转座子(铸造)共同OPT CAS基因用于RNA引导的转座。在基因组数据库中极为罕见。最近的调查报道了类似TN7样的转座子,该座子选择了I型I-F,I-B和V-K CRISPR效应子。在这里,我们通过对元基因组数据库的生物信息学搜索扩展了报告的铸造系统的多样性。我们发现了所有已知铸件的体系结构,包括级联效应器的布置,目标归巢方式和最小V-K系统。我们还描述了选择了I型I-C和IV型CRISPR-CAS系统的铸造家族。我们对非TN7施放的搜索确定了包括核酸酶死亡CAS12的候选者。这些系统阐明了CRISPR系统如何与转型共同发展并扩展可编程基因编辑工具包。
摘要 CRISPR 相关转座子 (CAST) 会将 Cas 基因纳入 RNA 引导的转座。CAST 在基因组数据库中极为罕见;最近的调查报告称,Tn7 样转座子会将 IF、IB 和 VK 型 CRISPR 效应子纳入。在这里,我们通过对宏基因组数据库进行生物信息学搜索来扩展已报告的 CAST 系统的多样性。我们发现了所有已知 CAST 的新架构,包括级联效应子的新排列、新的自靶向模式和最小 VK 系统。我们还描述了已将 IC 型和 IV 型 CRISPR-Cas 系统纳入的新 CAST 家族。我们对非 Tn7 CAST 的搜索确定了将 Cas12a 纳入水平基因转移的推定候选者。这些新系统揭示了 CRISPR 系统如何与转座酶共同进化并扩展了可编程基因编辑工具包。