课程目标:介绍计数基础、鸽巢原理、排列组合、二项式系数和恒等式、算法复杂性、递归关系、生成函数、容斥原理和图论基础等基本概念和构造。本课程旨在为学生提供学习电气工程高级课程所需的技能。
随着量子技术的出现,信息技术的发展已到达一个关键点,有望实现无与伦比的计算能力和解决问题的能力。基于离散变量和连续变量的量子计算有望有效解决计算上难以解决的问题。离散变量量子计算依赖于有限维希尔伯特空间中编码的量子,而连续变量量子计算则利用谐振子的无限维希尔伯特空间。这两种范式在实现通用性和容错性方面都面临挑战,因此需要探索非高斯性和魔法等资源理论。本论文研究了离散和连续变量系统的量子计算资源,并有助于加深我们对实现不同架构中量子计算潜力所必需的资源的理解。我们研究这些资源理论之间的相互作用,提出新的量词并建立离散和连续变量量子计算之间的联系。
极简至上。电路和基础设施平台配置为卡架和背板子系统,其中多个子系统占用单个机柜。根据应用,通道、部门或设备列车可能位于单个机柜中 - 非常适合改造现有设施。通道、部门和列车也可以分布在多个机柜中,可以位于同一房间,也可以位于符合冗余和多样性要求的独立房间中。最重要的是,DLSS 架构提供检测和指示,指示系统中何时何地可能发生故障。
美国陶瓷学会公报涵盖学会及其会员的新闻和活动,包括陶瓷界感兴趣的项目,并提供有关陶瓷技术各个方面的最新信息,包括研发、制造、工程和营销。美国陶瓷学会对本出版物的社论、文章和广告部分中信息的准确性不承担任何责任。读者应独立评估本出版物的社论、文章和广告部分中任何陈述的准确性。美国陶瓷学会公报(ISSN 号0002-7812)。©2020。在美国印刷。ACerS Bulletin 每月出版一次(二月、七月和十一月除外),是一本“双媒体”杂志,有印刷版和电子版(www .ceramics .org)。编辑和订阅办公室:550 Polaris Parkway, Suite 510, Westerville, OH 43082-7045。美国陶瓷学会会员可享受订阅服务。非会员印刷版订阅费率(包括在线访问):美国和加拿大,1 年 135 美元;国际,1 年 150 美元。* 费率包括运费。国际转寄服务是美国和加拿大以外的标准服务。* 国际非会员也可以选择以 100 美元的价格订阅纯电子版电子邮件。单期,1 月至 10 月/11 月:会员每期 6 美元;非会员每期 15 美元。12 月刊( ceramicSOURCE ):会员 20 美元,非会员 40 美元。单期邮资/手续费:美国和加拿大,每件 3 美元;美国和加拿大加急(UPS 第二天空运),每件 8 美元;国际标准,每件 6 美元。邮政局长:请将地址变更寄至 American Ceramic Society Bulletin, 550 Polaris Parkway, Suite 510, Westerville, OH 43082-7045。定期邮资在俄亥俄州韦斯特维尔和其他邮寄处支付。地址变更需要六周时间。ACSBA7,第 7 卷。99,No.2,第 1-48 页。所有专题文章均收录于 Current Contents 中。
在第二个 SS f M 程序中,提供了一个基于网络的工具,使用户能够为许多关键计算生成适合其自身应用的参考数据集和相应的参考结果。该工具采用 Java 实现的数据生成器的形式,以便提供生成器的可移植性(跨计算机平台),以及生成的参考数据集的灵活性和可重复性。该工具在第三个 SS f M 程序中得到进一步开发,以提供测试服务的功能。该工具有两种操作模式。在第一种模式下,为用户提供参考数据集和相应的参考结果。在第二种模式下,仅向用户提供参考数据集,但可以上传测试结果以与相应的参考结果(对用户隐藏)进行比较。
Ivan E. Ivanov 1,2,†、Addison V. Wright 3, ‡、Joshua C. Cofsky 3、Kevin D. Palacio Aris 4、Jennifer A. Doudna 3,5、Zev Bryant 2,6
扩散模型已成为机器学习中生成建模的重要方法。这些模型是通过模拟一些“破坏性”随机过程来训练的,这些随机过程在训练数据样本中初始化,并且具有易于采样的限制分布。通过学习如何逆转随机过程来获得生成模型。扩散模型的大多数应用都用于连续数据,并使用高斯扩散作为随机过程。但是,相同的想法也可以通过适当的破坏过程选择,例如基于离散的马尔可夫链和吸收状态的引入。通过指导进一步提高了扩散生成模型的性能和适用性,这是一种基于某些辅助信息或外部模型来指导生成过程的技术。指导既可以用于有条件生成(例如带有分类器指导)和改善样本质量(鉴别器指导)。在本演讲中,我将讨论如何将顺序的蒙特卡洛用于扩散模型的指导。我将重点放在不容易适用的基于常规得分的指导技术的离散设置上。基于与FilipEkströmKelvinius的联合工作(自回旋扩散模型的歧视指南,AISTATS 2024,https://arxiv.org/abs/2310.15817)
完成本课程的作业的目的是让您学习课堂上的主题,并通过练习来提高。课程涵盖了完成解决方案所需的所有资源,并且作业都经过精心设计,以帮助您加深理解。当您使用在线解决方案、AI 助手或其他人为您完成工作时,您是在伤害自己,并没有真正学习材料。使用这些资源被视为学术不诚实和抄袭。对于本课程,禁止使用在线解决方案和 ChatGPT 等 AI 助手。使用此类资源违反了课程的学术道德政策,可能会导致课程不及格。
其中 FS 是初始和最终热力学平衡态之间的亥姆霍兹自由能差。在不同的背景下,量子反馈控制因控制和稳定量子系统而引起了相当大的关注 [16-22]。例如,它可以应用于压缩电磁场 [18]、自旋压缩 [20] 和稳定宏观相干性 [22]。虽然作为随机动态系统的量子反馈控制理论框架已经很完善,但量子反馈控制可能带来的热力学增益尚未完全了解。在本文中,我们推导出一个新的热力学不等式,它对可从具有离散量子反馈控制的多热浴中提取的功设置了基本极限 [7, 23],包括量子测量 [23, 24] 和取决于测量结果的机械操作。最大功的特征是热力学系统与反馈控制器之间的广义互信息量。我们将其称为 QC 互信息量,其中 QC 表示被测系统是量子的,测量结果是经典的。在经典测量的情况下,QC 互信息量简化为经典互信息量 [25]。在没有反馈控制的情况下,新的不等式
深层生成模型可以生成以各种类型表示形式(例如Mel-Spectrograms,Mel-Frequency cepstral系数(MFCC))生成的高保真音频。最近,此类模型已用于合成以高度压缩表示为条件的音频波形。尽管这种方法产生了令人印象深刻的结果,但它们很容易在调理有缺陷或不完美时产生可听见的伪影。另一种建模方法是使用扩散模型。但是,这些主要用作语音声码器(即以MEL光谱图为条件)或产生相对较低的采样率信号。在这项工作中,我们提出了一个高保真性的基于扩散的框架,该框架从低比二酸离散表示形式中生成任何类型的音频模式(例如,语音,音乐,音乐,环境声音)。以同样的比率,就感知质量而言,该方法的表现优于最先进的生成技术。培训和评估代码可在Face-Bookerearch/Audiocraft GitHub项目上找到。在以下链接上可用。