心电图(ECG)是一种捕获心脏活动的电测量,是诊断心血管疾病(CVD)的金标准。但是,由于ECG需要使用用户参与,因此不可避免地进行心脏监测。相比之下,光电学(PPG)提供了易于收集的数据,但其精度有限限制了其临床用法。为了确定这两个信号的优势,最近的研究不适合将PPG信号重新构成到ECG的各种深度学习技术;但是,缺乏文本信息以及降低噪声生物医学信号的能力最终会限制模型的影响。在这项研究中,我们提出了一种基于变压器的新型体系结构,可从PPG重建ECG,并将PPG和重建的ECG与CVD检测的多种方式相结合。此方法是第一次在生物医学波形重构上进行了变压器序列到序列转换,并结合了PPG和ECG的优势。我们还创建了基于斑块的注意(SPA),这是一种效率方法,用于编码/解码生物医学波形。通过获取各种序列长度并捕获交叉点连接,SPA最大程度地提高了本地特征和全局上下文反复的信号操作。所提出的体系结构在BIDMC数据库上生成了0.29 RMSE的状态性能,以重新构建PPG到ECG,超过了先前的研究。我们还在模拟III数据集上评估了该模型,在CVD检测中达到了95.9%的精度,并在PPG-BP数据集中评估了该模型,在相关的CVD糖尿病检测中达到了75.9%的精度,表明其一般能力。作为一种概念证明,一种名为Pearl(原型)的耳环可穿戴式可穿戴,旨在扩大护理点(POC)医疗保健系统。
○ 哪些基因编码了红细胞镰状化?○ CRISPR-Cas9 在原核生物(如细菌)中的自然机制是什么,它是如何被修改并用于编辑真核生物(有细胞核的生物)中的基因的?○ CRISPR 基因编辑技术如何应用于镰状细胞病患者?
已经对数据挖掘在包括CAD在内的疾病诊断中的应用进行了各种研究; [9,10]将建议的模型与基于PSO的自适应神经融化推理系统(PSO -ANFIS)进行了比较。结果表明,建议的模型优于PSO -ANFIS模型。建议的模型还具有2个重要好处:(1)它很快学习,(2)响应迅速。对于大型准确的数据集,快速学习和快速响应能力的重要性很重要。[11] Jackins等。进行了一项研究,以找到可用数据集中诊断糖尿病,冠心病和癌症的模型。他们使用幼稚的贝叶斯分类和随机森林(RF)分类算法进行数据集的分类。结果表明,三种疾病的RF模型的准确性高于幼稚贝叶斯分类器的精度值。[12] Das等。使用统计分析系统,引入了一种诊断心脏病的方法。神经网络集合方法位于提议系统的中心。从从克利夫兰心脏病数据库中获得的数据中获得的分类准确性为89.01%。另外,在心脏病的诊断中分别获得了80.95%和95.91%的敏感性和特异性。[14] Dutta等。[13] Olaniyi和Oyedotun提出了一个基于人工神经网络(ANN)的三步模型来诊断心绞痛,其精度为88.89%。提出了具有卷积层的有效神经网络。他们提出的模型在预测冠心病方面的准确性达到了77%。该模型还能够比传统方法(例如支持向量机(SVM)和RFS)更准确地预测负面案例。[15]
最新版的糖尿病图集是在2021年全世界有超过十亿成年人(20-79岁)患有糖尿病的成年人。预测表明,到2045年,这个数字将增加约50%,超过3/4亿。在此过程中,据估计,糖尿病患病率在2021年为10.5%,在2045年将增加到12.2%。1糖尿病的患病率在我国也在上升。根据1998年进行的基于人群的土耳其糖尿病流行病学(TURDEP-I)调查,其12年的重复版本Turdep-II(于2010年进行),糖尿病的患病率从Turkey的成人人群中从7.2%增加到13.7%。2种糖尿病是全球成人死亡的十大原因之一,而且国家对糖尿病的经济负担很高。3,人们认为与糖尿病有关的全球医疗保健支出在2021年为9660亿美元。1
我们很高兴邀请您参加国际间隙肺部疾病研讨会,该研讨会将于2024年9月26日至27日在意大利罗马的NH Vittorio Veneto酒店举行。
场景文本图像不仅包含样式信息(字体,背景),还包含内容信息(字符,纹理)。不同的场景文本任务需要不同的信息,但是以前的表示学习方法 - 在所有任务中使用紧密耦合的功能,从而导致次优性能。我们提出了一个旨在解开这两种功能的分解表示学习框架(亲爱的),以改善适应性,以更好地解决各种下游任务(选择您真正需要的内容)。具体来说,我们合成具有相同样式但内容不同的图像对数据集。基于数据集,我们通过监督设计将两种类型的功能分解。很明显,我们将视觉表示形式直接分为样式和内容功能,内容特征是通过文本识别损失来监督的,而对齐损失使图像对中的样式特征保持一致。然后,样式功能用于通过图像解码器重新构造对应图像的提示,以指示对应方的内容。这样的操作根据其独特属性有效地将功能分解。据我们所知,这是场景文本领域中第一次删除文本图像的固有属性。 我们的方法在场景文本识别,转换和编辑中实现了最新的性能。据我们所知,这是场景文本领域中第一次删除文本图像的固有属性。我们的方法在场景文本识别,转换和编辑中实现了最新的性能。
年轻时被诊断出患有2型糖尿病(T2D)的人正在增加,并且患心血管疾病的风险升高(CVD)(1)。先前的研究表明,诊断时糖尿病亚组除以年龄的差异表现出遗传危险因素的差异(2),并且患有早发T2D的糖尿病差异具有较高的T2D多基因风险评分(PRS)(3)。然而,与T2D诊断时与年龄相关的遗传异质性是否会影响过多的CVD风险仍然很大未知。与常见的土壤假设一致(4),我们假设在早发糖尿病患者中对CVD的遗传易感性增加。我们分析了来自两个前瞻性共同体的数据,以调查对较早的T2D诊断对事件CVD的遗传影响增加。此外,由于建议一种健康的生活方式来抵消CVD的遗传风险增加(5,6),因此我们探索了通过T2D诊断时的年龄通过健康的生活方式层次来修改对CVD的遗传影响。
抽象的心脏病和机器学习是两个不同的词,其中一个与医学领域有关,另一个与人工智能有关。在医疗中,大多数人都面临着心脏病的问题,机器学习正在发展计算机科学领域。心脏病被称为心脏病,它提供了更多的数据或信息,应收集它以提供患者的报告,并且机器学习还需要用于预测和解决问题的数据。机器学习技术用于预测心脏病的预测,在这种预测中,它以更少的计算时间和更高的准确性来促进其健康。心脏病预测需要大量的数据来预测,在云计算中,我们也有更多数据,并且在云中可用的数据很难分析。因此,我们使用机器学习算法或技术来预测心脏病,并且以相似的方式应用了这些算法或技术来预测或分析云中可用的数据。在本文中,我们将使用称为Backpropagation算法的机器学习算法,后来我们以后使用优化算法。反向传播算法涉及人工神经网络。反向传播是一种方法,用于计算一批数据后每个神经元的误差贡献(在图像识别,多个图像中)。这是由包围优化算法使用的,以调整每个神经元的重量,从而完成该情况的学习过程。机器学习算法和技术用于识别人类风险问题的强度,它可以帮助患者采取安全措施,以挽救患者的生命。关键字:机器学习,云计算,心脏,反向传播,优化
• Cardiovascular disease (CVD) remains the leading cause of death in the United States, accounting for 928,741 deaths in 2020.1 • In 2020, the leading cause of deaths attributable to CVD in the United States was coronary heart disease (CHD) at 41.2%, followed by stroke (17.3%), other CVD (16.8%), high blood pressure (12.9%), heart failure (9.2%)和动脉疾病(2.6%)。1•2018年至2019年美国,美国CVD总CVD的直接和间接成本为4073亿美元(直接成本为2514亿美元,生产率损失/死亡率为1559亿美元)。 1•平均而言,在美国,每36秒的CVD死亡。2•全球,CVD是死亡的主要原因,占2019年全球死亡的32%。1•2018年至2019年美国,美国CVD总CVD的直接和间接成本为4073亿美元(直接成本为2514亿美元,生产率损失/死亡率为1559亿美元)。1•平均而言,在美国,每36秒的CVD死亡。2•全球,CVD是死亡的主要原因,占2019年全球死亡的32%。
