○ 哪些基因编码了红细胞镰状化?○ CRISPR-Cas9 在原核生物(如细菌)中的自然机制是什么,它是如何被修改并用于编辑真核生物(有细胞核的生物)中的基因的?○ CRISPR 基因编辑技术如何应用于镰状细胞病患者?
9 岁的 Jason Wright 刚刚醒来。他的母亲正坐在他的病床旁边,与他的医生交谈。Jason 住院是因为他患有严重的镰状细胞病疼痛危机。在疼痛危机期间,形状不规则的红细胞会卡在血管中,阻止氧气到达身体组织。这会导致剧烈疼痛和肿胀。Jason 的腿部和腹部疼痛难忍,因此他的母亲将他带到了最近的医院的急诊室。Jason 到达急诊室后,他的护理团队开始对他进行治疗,包括输血和服用药物以帮助减轻疼痛。Jason 第二天可以回家,但他的医生警告他这种情况很可能会再次发生。这到底是怎么发生的?
心电图(ECG)是一种捕获心脏活动的电测量,是诊断心血管疾病(CVD)的金标准。但是,由于ECG需要使用用户参与,因此不可避免地进行心脏监测。相比之下,光电学(PPG)提供了易于收集的数据,但其精度有限限制了其临床用法。为了确定这两个信号的优势,最近的研究不适合将PPG信号重新构成到ECG的各种深度学习技术;但是,缺乏文本信息以及降低噪声生物医学信号的能力最终会限制模型的影响。在这项研究中,我们提出了一种基于变压器的新型体系结构,可从PPG重建ECG,并将PPG和重建的ECG与CVD检测的多种方式相结合。此方法是第一次在生物医学波形重构上进行了变压器序列到序列转换,并结合了PPG和ECG的优势。我们还创建了基于斑块的注意(SPA),这是一种效率方法,用于编码/解码生物医学波形。通过获取各种序列长度并捕获交叉点连接,SPA最大程度地提高了本地特征和全局上下文反复的信号操作。所提出的体系结构在BIDMC数据库上生成了0.29 RMSE的状态性能,以重新构建PPG到ECG,超过了先前的研究。我们还在模拟III数据集上评估了该模型,在CVD检测中达到了95.9%的精度,并在PPG-BP数据集中评估了该模型,在相关的CVD糖尿病检测中达到了75.9%的精度,表明其一般能力。作为一种概念证明,一种名为Pearl(原型)的耳环可穿戴式可穿戴,旨在扩大护理点(POC)医疗保健系统。
近年来在肝病学上取得了显着进步,但巨大的挑战和未满足的需求仍然存在。1个慢性肝脏疾病施加重大的公共卫生负担,肝细胞癌(HCC)是全球癌症死亡率的第四个主要原因。2种风险评估,筛查,预后和治疗优化的缺陷有助于次优的患者护理。然而,肝病领域随时准备在新兴的研究和新工具上取得成功,从而增强了对肝病机制的理解,卓越的预后准确性以及更量身定制的治疗递送。将这些创新从长凳转换为床边将是改善肝脏疾病患者的临床管理和结果的关键。3最紧迫的肝病需求之一是提高预后精度和HCC的治疗选择。作为最常见的原发性肝癌,HCC占了癌症的大量死亡率。4优化和个性化的HCC疗法需要准确预测治疗反应和整体预后。5研究表明,α-五蛋白(AFP)和成像特征等生物标志物的预后效用,但是结合多种方式可以进一步完善结果预测。一个例子是MAPS-Crafity评分,它吸收了临床变量,AFP水平和CT/MRI发现,以预测高级HCC中的免疫疗法和靶向治疗反应的系统。6-10包括变压器模型在内的机器学习方法还表现出有望解剖复杂数据集,以确定局部区域处理后的HCC预后,例如射频消融(RFA)。
心血管疾病(CVD)负责低收入和中等收入国家的过早死亡。早期的CVD检测和干预在这些人群中至关重要,但是许多现有的CVD风险评分需要进行体格检查或实验室测量,这在此类卫生系统中可能具有挑战性。在这里,我们调查了使用光摄影学(PPG)的潜力,这是一种在大多数智能手机上可用的传感技术,可以潜在地以低成本启用大规模筛查,以进行CVD风险预测。我们开发了一个基于PPG的CVD风险评分(DLS),以预测十岁内发生重大不良心血管事件(MACE:非致命性心肌梗死,中风和心血管死亡)的可能性,仅鉴于年龄,性别,性别,吸烟状态和PPG作为预测者,只有年龄,性别,性别,性别,性别,性别,性别,性别,性别,性别,性别,性别。我们将DLS与基于办公室的Refit Who-Who分数进行了比较,该分数采用了WHO和Globorisk分数(年龄,性别,吸烟状况,身高,体重和收缩压)的共享预测指标,但在UK Biobank(UKB)同胞上进行了改装。在UKB队列中,DLS的C统计效果(71.1%,95%CI 69.9-72.4)与基于办公室的Refit-Who得分(70.9%,95%CI 69.7-72.2;非内野利率2.5%,p <0.01)。DLS的校准令人满意,平均绝对校准误差为1.8%。在基于办公室的分数中添加DLS功能将C统计量提高了1.0%(95%CI 0.6-1.4)。dls预测,十年的MACE风险与基于办公室的Refit-Who得分相当。它提供了概念验证,并提出了基于PPG的方法在资源有限地区基于社区的初级预防的潜力。
帕金森氏病(PD)是一种毁灭性的运动,在全球流行率上加速了,但是缺乏精确的症状测量使得有效疗法的发展具有挑战性。统一的帕金森统一级评级量表(UPDRS)是评估运动症状严重程度的黄金标准,但其手动评分标准含糊不清,既模糊又主观,导致了粗糙和嘈杂的临床评估。机器学习方法有可能通过使PD症状评估现代化,以使其更具定量,客观和可扩展性。但是,缺乏用于PD运动考试的基准视频数据集阻碍了模型开发。在这里,我们介绍了郁金香数据集以弥合此差距。Tulip强调预先挑剔和全面性,包括25种UPDRS运动考试活动的多视频记录(6张摄像机),以及3位临床专家的评级,在帕金森氏症患者和健康对照组中。多视图记录实现了身体运动的3D重建,该重建更好地捕获疾病特征,而不是更多的调用2D方法。使用数据集,我们建立了一个基本线模型,用于预测3D姿势的UPDRS分数,以说明如何自动化现有诊断。展望未来,郁金香可以帮助开发超过UPDRS分数的新的精确诊断,从而深入了解PD及其潜在治疗方法。
4 md.devendran@gmail.com摘要:慢性肾脏病(CKD)是一个重大的全球健康问题,通常导致肾脏衰竭,需要昂贵的医疗治疗,例如透析或移植。早期检测CKD对于及时干预和改善患者预后至关重要。 该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。 通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。 本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。 使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。 这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。 该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。早期检测CKD对于及时干预和改善患者预后至关重要。该项目旨在开发基于机器学习的预测模型,以便在早期诊断CKD。通过利用一系列临床特征,例如年龄,血压,血糖和其他相关的生物标志物,我们采用机器学习算法,包括决策树,随机森林和支持向量机(SVM),以预测患者开发CKD的患者的可能性。本研究中使用的数据集包括具有各种肾脏状况的患者的病历,并应用了诸如归一化和缺失数据处理的预处理技术以确保模型的鲁棒性。使用诸如准确性,精度,召回和F1得分等指标评估模型的性能,以确保可靠的预测。这种方法不仅旨在提高诊断准确性,而且还提供了一个数据驱动的解决方案,以帮助医疗保健专业人员做出明智的决策。该项目的结果可以有助于更好地管理CKD,最终有助于减轻医疗保健系统的负担并改善患者护理。
肌萎缩性侧索硬化症也称为ALS或Lou Gehrig氏病是一种致命的神经退行性疾病,其特征是脊髓和大脑中神经细胞的进行性变性。als可以说是影响神经和肌肉功能的疾病最具灾难性的,因为它无法治愈。