1.1 显示器的历史 目前最先进的运输机上所采用的先进显示器反映了一个多世纪的发展历程。从莱特兄弟用作滑行指示器的绳子到现代电子玻璃驾驶舱,驾驶舱显示器一直是直接向飞行员呈现信息的手段。“这些飞机显示器是飞行员观察力量、命令和信息世界的窗口,而这些东西是无法作为自然发生的视觉事件或物体看到的”(Stokes & Wickens,1988)。直到出现了无视觉参考飞行的需求,以及随后“开发出可用作人工地平仪的陀螺仪”(Hawkins,1987),显示器的发展才受到认真关注。这种认真关注带来了重大进步。后来,另一项推动显示器发展的技术突破是电子技术的快速发展。这使得“伺服驱动仪表在 20 世纪 50 年代成为可能,然后设计师可以自由地将传感器放置在远离实际仪表的位置”(Hawkins,1987 年)。随着数字航空电子技术的不断发展,以及航空运输成为一种流行的旅行方式,人们越来越关注航空安全、人为因素和显示设计。随着飞机性能的提高,飞行员可以获得更多信息,显示器的数量和复杂性都在增加
2.2 物联网智能显示技术 周良、张玲玲、周久斌、刘金娥、秦峰,上海天马微电子股份有限公司,上海,中国 2.3 集成多屏驱动器的显示模块 周良、姚璐、张玲玲、周久斌、杜万春、刘金娥、秦峰,天马微电子集团,上海,中国 2.4 自由曲面和曲面显示器的高精度光学贴合 Eugen Bilcai,汉高集团,美国密歇根州麦迪逊高地 2.5 汽车外饰显示器的数字化造型和安全性 Johnathan Weiser、Richard Nguyen、Kimberly Peiler,欧司朗光电半导体公司,美国密歇根州诺维 Ulrich Kizak,欧司朗光电半导体公司,德国雷根斯堡 2.6 传感应用中高质量 SNR 的新方法 Gerald Morrison,SigmaSense,美国德克萨斯州奥斯汀 第三场:平视显示器 联合主席: Ross Maunders,FCA US LLC,美国密歇根州奥本山 Dan Cashen,大陆汽车集团,美国密歇根州奥本山 3.1 用于平视显示器应用的漫射微透镜阵列 Naoki Hanashima、Mitsuo Arima、Yutaka Nakazawa,迪睿合株式会社,日本宫城县多贺城市 Kazuyuki Shibuya,迪睿合株式会社,日本宫城县登米市 Jingting Wu,迪睿合美国公司;美国加利福尼亚州圣何塞 3.2 人类对平视显示器重影的感知研究 Steve Pankratz、William Diepholz、John Vanderlofske,3M 公司,美国明尼苏达州圣保罗 3.3 使用自由曲面光学元件的 3D AR HUD 计算全息显示器 Hakan Urey,CY Vision,美国加利福尼亚州圣何塞
本手册旨在提供用于规划和设计在飞机上安装空中交通显示器 (ATD-11、ATD-57 和 ATD-80) 的机械和电气信息。本手册不能替代经批准的机身专用维护手册、安装设计图或完整的安装数据包。如果试图仅参考本手册安装设备,而没有首先规划或设计适合您飞机的安装,可能会危及您的安全,因此不建议这样做。本手册的内容假定由有能力和合格的航空电子工程人员和/或航空电子安装专家使用标准航空维护实践,并符合相关公认做法。本手册不适用于不具备上述能力和能力的个人使用。有关更多信息和其他注意事项,请参阅“限制”部分。
传感器和通信技术的进步使航空飞行更加容易和安全,但代价是飞机会产生大量信息。尽管大量信息用于地面离线处理或机载任务计算机自动处理,如控制自动驾驶系统,但飞行员需要手动感知和处理大量信息,以便为飞行和任务控制任务做出决策(Hierl、Neujahr 和 Sandl,2012 年)。军用快速喷气式飞机(用于空中优势或多用途任务的战斗机)的信息处理比客机更困难,因为飞行员除了主要飞行任务外还需要执行次要任务。次要任务控制任务可能包括侦察、保护或跟踪空中资产以及武器投送,所有这些都需要仔细感知和分析飞机外部的信息以及驾驶舱内显示的信息。在有限的驾驶舱空间内有效显示信息是一项具有挑战性的设计任务。现有军用飞机使用三种类型的视觉显示器:下视显示器 (HDD)、抬头显示器 (HUD) 和头戴式显示器 (HMD)。HDD 配置为将信息显示为多功能显示器 (MFD)。MFD 用于以可配置的方式显示从主要飞行数据到空中物体细节等信息。每个都是矩形的,由一组
先进技术 – 增强型高亮度 HUD 显示器提供宽视野 (FOV),能够显示带有叠加符号(光栅上的笔划)的高分辨率传感器图像。该系列中的系统采用创新的数字图像源,可提高可靠性。Elbit Systems 的 LPHUD 系列既可以与传统的模拟偏转接口连接,也可以与现代高速数字总线(例如 ARINC-818)连接。该系列与 NVG 设备完全兼容。
虽然多年来航空一直是 HF 分析和投入的重点,但飞行表演这一特定领域似乎很少受到人为因素的关注。虽然在一定程度上可以将一般 HF 指导应用于这一特定航空领域,但飞行表演有特定的要求和特性,这使得特定的 HF 分析和指导非常有价值。与 FDD 和 DP 的讨论表明,大约 80% - 90% 的飞行表演问题可能涉及人为因素 - 这本身与“主流航空”大致相似。但是,飞行表演的性质可能会增加安全风险,并且对于在英国组织飞行表演的人员 - 飞行表演导演 (FDD) 和参加飞行表演的人员 - 表演飞行员 (DP),更需要对 HF 进行透彻理解和实际应用。
13. 摘要(最多 200 个字)这项工作的目的是为提高航空安全性,为驾驶舱显示和控制提供人为因素监管和指导材料的单一来源参考文件。本文件确定了在设计和评估所有类型飞机的航空电子显示和控制时需要考虑的人为因素问题的指导(14 CFR 第 23、25、27 和 29 部分)。它旨在帮助识别和解决 FAA 飞机认证专家经常报告的典型人为因素问题。本文件取代了版本 1 报告(DOT/FAA/TC-13/44;DOT-VNTSC-FAA-13-09)。主题涉及显示硬件、软件、警报/通告和控制的人为因素/飞行员界面方面,以及驾驶舱设计理念、预期功能、错误管理、工作量和自动化方面的考虑因素。附录提供了示例测试程序和场景以及主要参考文献列表,以方便使用和应用本文档。
摘要 LOC-I 事故每年都在发生,而事故调查报告中的建议似乎没有效果。到目前为止,事故报告似乎并没有解决飞行员失去控制的原因,只是关注需要更好或更多的飞行员培训。很少或根本没有关注飞行员失去控制的原因。在去年奥格斯堡举行的 ISASI 会议上,发表了一篇论文,讨论了“分析前庭错觉潜在影响的新工具” 1 ,如躯体重力错觉和躯体旋转错觉导致飞行员空间迷失方向。人类大脑在零重力或偏移重力环境中依赖强烈的视觉提示来保持方向和平衡的知识已得到充分证明。然而,在大多数 LOC-I 事故报告中似乎都缺乏这方面的知识。在黑暗或仪表条件下的飞行条件下,飞行员可能会受到躯体重力、躯体旋转和 G 过量效应错觉的影响,导致飞行员空间定向障碍(“飞行员眩晕”)。对抗这些感官错觉的唯一有效线索是强烈的视觉线索。在这方面的一个说明点是未经训练的私人飞行员进入云层的例子。他很快就会失去控制,但当飞机离开云层并且飞行员在白天视觉条件下观察到自然地平线时,他很可能会恢复控制。在这种情况下,未经训练的飞行员从充满挡风玻璃的自然地平线接收视觉提示,并通过使用他的周边视力,他接收重新
20.概要。实施第三级天气,以及对激活每个天气图的现有雷达信号阈值进行更改,旨在帮助管制员协助飞行员避开危险天气区域。级别将由径向线表示;由 M 和 H 表示。与今天提供此类天气的方式相比,航路天气的收集、处理和显示将发生最小的变化。已经进行或正在进行的更改包括:修改中央计算机综合主机 (CCCH)、计算机显示通道 (CDC) 和显示通道综合 (DCC)、直接访问雷达通道 (DARC) 和航路自动雷达跟踪系统 (EARTS) 中的软件,以接受来自 CD-2 和 ARSR-3 系统的三级天气。此外,通用数字化仪 2 型 (CD-2) 和航路监视雷达 3 型 (ARSR-3) 系统将进行改造,以提供处理和向 ARTCC 传输三级天气的能力。