摘要-本文报告了为精确测量动态信号而不断努力对定制数字化采样器的失真行为进行建模的工作。这项工作是美国国家标准与技术研究院 (NIST) 为推动波形采样计量技术发展而不断努力的一部分。本文介绍了一种具有 -3-dB 6-GHz 带宽的采样器的分析误差模型。该模型是通过检查相平面中的采样器误差行为而得出的。该模型将信号幅度、一阶导数和二阶导数的每样本估计值作为输入,其中导数与时间有关。该模型的解析形式由这些项中的多项式组成,这些多项式是根据数字化器输入电容的电压依赖性和先前研究的旧数字化器中的误差行为而选择的。在 1 GHz 时,当将模型生成的样本校正应用于波形时,总谐波失真可从 -32 dB 改善到 -46 dB。还考虑并纠正了采样系统中时基失真的影响。结果表明,在模型中加入二阶导数依赖性可通过对拟合波形进行精细的时间调整来改善模型与测量数据的拟合度。
金属增材制造 (MAM) 是一项快速发展的技术,有可能彻底改变制造业。当前的 MAM 工艺之一是直接能量沉积 (DED),它使用逐层沉积来设计零件以进行整合并最大限度地减少材料浪费。然而,DED 工艺的反复加热和冷却通常会导致 AM 组件发生变形,从而导致过早失效。该研究利用数值计算软件 Simufact Welding 对利用 DED 工艺在 SS316 基材上增材制造的 Inconel 718 的热致变形进行了数值计算分析。Inconel 718 组件和 SS316 基材的几何设计旨在更深入地了解 LMD 工艺的变形行为。模拟结果表明,变形随层数的增加而增加,并且变形率沿沉积高度而变化。节点 S3 和 S5 处的基材变形在每一沉积层中均呈线性增加,但在最后四层中节点 S1 和 S2 处的变形速率降低,这表明基材和沉积材料之间的温度均匀性。
本文提出了一个改进的数学模型,用于计算两个对齐表面网格的失真向量。在具有特殊数学条件(例如尖角和小半径)的现有模型上进行基准测试时,模型显示出更好的准确性。该模型被实施到已发达的失真补偿数字工具中,并应用于工业组件。该组件由Inconel 718制成,由激光粉末融合3D印刷技术生产。使用已开发的数学模型预先扭曲其原始几何形状,将数字工具用于补偿原始设计的几何形状。对于在构建过程中受到屈曲的有挑战性的薄结构,工业组件的失真从约±400μm减少到±100µm。
一般权利一般权利所有珍珠中的内容均受版权法保护。根据发布者政策提供作者手稿。请仅使用项目记录或文档中提供的详细信息引用发布的版本。在没有公开许可证的情况下(例如Creative Commons),应从出版商或作者那里寻求进一步重用内容的许可。取消策略取消政策,如果您认为本文档违反版权,请联系提供详细信息的图书馆,我们将立即删除对工作的访问并调查您的索赔。遵循以下工作:https://pearl.plymouth.ac.uk/hp-research
15.船舶结构委员会及其成员机构赞助的补充说明 16.摘要 本文提出了一种基于固有应变理论结合有限元法预测加筋曲板焊接变形的有效方法(等效载荷法)。该方法可以预测加筋曲板焊接变形的各种模式,例如角变形、面内收缩、纵向和横向弯曲变形,并考虑按制造阶段进行的焊接顺序。等效载荷是通过积分固有应变分量来确定的,固有应变分量是在使用最高温度和约束程度计算的热影响区附近计算的。通过弹性分析计算了等效载荷下的曲板加筋焊接变形,并与实验和热弹塑性有限元分析进行了比较。用所提方法计算的加筋曲板焊接变形与试验和有限元分析结果有较好的一致性。实践证明,所提方法具有较高的效率和准确性。用所提方法可以预测实船曲型双底分段的焊接变形。本方法高效、准确,为预测结构形状复杂度较高的实船船体分段焊接变形提供了有力的解决方案。17.关键词 铝结构 海洋结构 铝设计 铝加工
近年来,随着激光应用的不断发展,科学家们对新型激光光束理论与实验的研究产生了浓厚的兴趣。其中,中心强度为零的暗空心光束由于其在原子光学、量子光学、二元光学、微观粒子操控、激光显微成像等领域的广泛应用而受到越来越多的关注。这类光束一般具有特殊的螺旋相位波前结构。本研究利用SLM产生任意阶数、任意拓扑荷的涡旋光,并讨论了SLM在应用中面临的诸多问题。由于SLM的相位调制在理想条件下是不畸变的,但在其制造过程中,其光调制部分不可避免地会产生微小的畸变和缺陷。事实上,这些畸变会给实验结果带来很大的误差。为了消除这种误差,本文提出了一种校正SLM误差的方法。首先对其畸变相位进行精确测量,然后对其进行校正。并以涡旋光束的发生为例,验证了校正效果。关键词:涡旋光束 计算全息图 空间光调制器 1.引言 利用传统的光学系统获取涡旋光束存在着装置复杂、调节困难等一系列问题[1] 。然而,利用空间光调制器(SLM)中的计算全息图很容易实现光束的转换。SLM 是对光束施加某种形式空间变化调制的物体。SLM 可以根据输入的信息调制光束的相位、偏振面、振幅、强度和传输方向等物理参数。只有改变输入信息,计算机才能控制 SLM 的参数。用 SLM 代替传统光学系统,可以轻松解决上述问题。用 SLM 代替传统光学系统,可以轻松解决上述问题。2007 年,Yoshiyuki Ohtake [2] 等人 [3] 在空间光调制器(SLM)中提出了一种基于空间全息图的涡旋光束转换方法。利用SLM产生径向折射率p和角折射率l分别为5阶和1阶的LG(拉盖尔高斯)光束,并实现可编程相位调制。利用计算机模拟LG光束在传输过程中的光强分布。本文利用反射式SLM产生3种涡旋光束、贝塞尔光束、LG光束和HyG(超几何)光束,利用干涉法验证它们的涡旋量和拓扑荷。通过数值计算对HyG光束进行理论模拟,并将模拟值与实验值进行比较,分析了误差。由于制造工艺的原因,SLM表面会存在细微缺陷,因此使用SLM会造成调制相位畸变。本文提出了一种测量和校正SLM畸变相位的方法。2.理论描述2.1贝塞尔光束沿z方向传输的BG光束的场分布可表示为[3]:
选择性激光熔化(SLM)是添加剂制造技术之一,可以使用3D CAD软件逐层构建复杂的结构模型。但是,更高的研究成本几乎无法通过传统方法进行,解决问题的最佳方法是使用仿真软件。本文旨在通过剪辑加成式(SA)软件找到具有最小失真和最低残留应力的样品的最佳处理参数组合。在最佳处理参数下的仿真结果,导致失真和残留应力的最小值是扫描功率与300W,扫描速度为1.3m/s的组合,扫描速度,扫描间隔,一个点直径(0.12mm)(0.12mm)(0.12mm)(0.12mm)和热处理持有时间为4H。此外,计算结果还提供了一种新的研究方法,以验证不同加工参数对SLM制造的Inconel 718合金的影响。
15. 船舶结构委员会及其成员机构赞助的补充说明 16. 摘要 本文提出了一种基于固有应变理论和有限元法的加筋曲板焊接变形预测方法(等效载荷法)。该方法可以预测加筋曲板焊接变形的各种模式,例如考虑按制造阶段进行的焊接顺序的角变形、面内收缩、纵向和横向弯曲变形。等效载荷是通过积分固有应变分量来确定的,固有应变分量是在使用最高温度和约束程度计算的热影响区附近计算的。用弹性分析计算了等效载荷作用下的曲线加筋板焊接变形,并与试验和热弹塑性有限元分析进行了比较。用所提方法计算的加筋曲板焊接变形与试验和密集有限元分析的结果有很好的一致性。事实证明,所提方法具有很高的效率和准确性。该方法可以预测实际船舶的弧形双底分段的焊接变形。该方法高效、准确,为预测结构形状复杂程度较高的实际船舶分段焊接变形提供了有力的解决方案。17. 关键词 铝结构,海洋结构,铝设计,铝加工
电荷密度波(CDW)是电子密度和原子位置的调制,其周期性不同于(通常与)基础的晶格[1]。CDW出现在各种材料中,它们可以内在地引起金属 - 绝缘体过渡[2]。CDW被认为是由嵌套,电子偶联,激子机制或其组合驱动的[1,3]。在这里,我们表明CDW也可以与CDW周期性以外的波矢量的基础晶格的变形有关。CDW与其他顺序参数的耦合(在元素硫的本情况下的晶格失真)不仅是CDW机制的一部分很重要,而且还改变了相变的特征。CDW以八个元素形成,其中七个处于高压[4-21]。CDW相的压力诱导的ONES集始终是第一阶转变,而高压转变归因于第一阶或二阶转变,通常涉及结构或光谱数据的外推[8,10,10,10,12 - 14,14,16,20,20,22,22]。如果CDW相是纯粹位移性的结构相变