摘要诱导的极化方法(IP)方法具有强大的潜力,可以更好地表征我们星球的临界区域,尤其是在以多相流动为特征的区域中。散装,表面和正交电导率与孔隙水饱和度之间的功率 - 功率 - 差异可能可用于绘制地下水分含量分布。然而,已经观察到这些功率流行关系中的饱和指数n和p随着地材料的质地和孔隙流体的湿气而变化。实验室中的传统实验设置不允许独立可视化孔隙流体分布。因此,两个饱和指数的物理解释尚不清楚。我们使用粘土涂层的玻璃珠开发了一种新型的毫米 - 流体微型模型,该玻璃珠具有出色的可见性和高IP响应。通过实验室实验,我们同时确定了微型模块的复合电导率,并通过此类多孔材料获得了由排水和吸收产生的相应的孔隙尺度流体分布。基于晶粒的复杂表面电导的升级,进行了复杂电导率的有限元模拟,以确定理想的孔隙流体分布下的饱和指数。结果表明,饱和指数n和p因绝缘流体的神经节大小而变化。饱和指数n和p与饱和孔连接性的变化速率表现出功率差异关系,这是通过计算Euler特征的导数来计算的。这些发现为饱和指数与微观流体分布之间的关系提供了新的物理解释。
对位置敏感的SIPM在所有光检测应用中都有用,需要少量读出通道,同时保留有关传入光的相互作用位置的信息。专注于2x2阵列的LG-SIPM,覆盖15的面积。5×15。 5 mm只有6个读数,我们提出了一种定量方法来评估图像重建性能。 该方法基于一种统计方法,以评估设备的精度(空间分辨率)和重建重点重心的精度(线性)。 通过大米概率分布函数拟合来实现此评估。 我们获得了平均传感器空间分辨率的最佳值81±3 µm(标准偏差),这是通过以通道输出信号的幅度重建每个位置来实现的。 相应的精度为231±4 µm。5×15。5 mm只有6个读数,我们提出了一种定量方法来评估图像重建性能。该方法基于一种统计方法,以评估设备的精度(空间分辨率)和重建重点重心的精度(线性)。通过大米概率分布函数拟合来实现此评估。我们获得了平均传感器空间分辨率的最佳值81±3 µm(标准偏差),这是通过以通道输出信号的幅度重建每个位置来实现的。相应的精度为231±4 µm。
政府太空组织正在通过各种项目积极地推进基于空间的量子密钥分布(QKD)。NASA正在开发具有海克(空间纠缠和退火量子实验)的安全量子网络,并在ISS上测试量子纠缠。ESA领导EAGLE-1任务与SES和欧洲合作伙伴部署欧洲第一个基于太空的QKD系统。中国的CNSA与中国科学技术大学(USTC)合作,在2016年与Micius卫星开创了QKD,并继续扩大其量子卫星网络。 CSA(加拿大航天局)正在与量子计算研究所(IQC)合作开发国家QKD示威者Qeyssat。 DARPA通过其量子孔径项目投资量子安全通信,探索用于军事应用的量子感应。中国的CNSA与中国科学技术大学(USTC)合作,在2016年与Micius卫星开创了QKD,并继续扩大其量子卫星网络。CSA(加拿大航天局)正在与量子计算研究所(IQC)合作开发国家QKD示威者Qeyssat。DARPA通过其量子孔径项目投资量子安全通信,探索用于军事应用的量子感应。
摘要:本文介绍了一种设计人道主义供应链(HSC)的方法,用于在墨西哥进行免疫接种。该研究分析了文献中提供的HSC的能力以及与墨西哥HSC疫苗接种相关的HSC。此外,研究了与HSC进行免疫接种的利益相关者。对900多种报纸文章进行了情感分析,以确定社会对政府疫苗分配战略的看法。考虑这些方面以及对供应链设计中最新技术的审查,提出了HSC的方法。一些发现是,可以通过政府的支持和不同利益相关者之间的强有力的合作来实现弹性和敏捷性,这是墨西哥HSC中最重要的能力,这是该战略中最弱点的。在墨西哥的疫苗接种策略中观察到的问题如下:(1)为疫苗的应用定义了每个城市的单个物理空间,(2)疫苗短缺,(3)据我们所知,没有方法可以应用方法来进行免疫接种。这种方法在能力和利益相关者方面考虑了HSC的设计,据我们所知,这是文献的新方面。此方法可用于墨西哥的HSC的各种情况。
摘要 - 本文引入了一种分布式的应急检测算法,用于使用随机混合系统(SHS)模型在功率分配系统中检测不可观察的意外情况。我们旨在应对分销网络中有限测量能力的挑战,这些挑战限制了迅速检测意外事件的能力。我们将分布网络连接,负载馈线,PV和电池储能系统(BESS)混合资源的动力学结合到完全相关的SHS模型中,该模型代表分布系统作为意外情况下不同结构之间的随机切换系统。我们表明,SHS模型中的跳跃对应于物理功率网格中的突发事件。我们基于幅度调制输入(MAMI)采用探测方法,以使意外情况可检测到。通过对样本分布系统的模拟来验证所提出的方法的有效性。索引术语 - PV-BESS,分布系统,不可检测的偶性,随机混合系统,偶然性检测。
1个子公司分布不应被解释为根据GAAP确定的经营活动提供的净现金替代品。子公司分配对母公司很重要,因为母公司是一家控股公司,并未从其自身的活动中获得任何大量直接收入,而是依靠其子公司的业务活动以及由此产生的分配来资助债务服务,投资和控股公司的其他现金需求。通过运营活动提供的子公司分配与净现金之间的差额的核对由经营活动产生的现金组成,这些现金是由于各种自然界的酌情和非秘密性的原因而保留在子公司的。These factors include, but are not limited to, retention of cash to fund capital expenditures at the subsidiary, cash retention associated with non-recourse debt covenant restrictions and related debt service requirements at the subsidiaries, retention of cash related to sufficiency of local GAAP statutory retained earnings at the subsidiaries, retention of cash for working capital needs at the subsidiaries, and other similar timing differences between when the cash is generated at the子公司及其到达母公司及相关控股公司时。
IIIA型粘多糖化病(MPS IIIA)患者缺乏溶酶体酶磺酰酶(SGSH),这对于硫酸乙酰肝素(HS)的降解而言是可重点的。尚未依赖的HS的积累会导致严重的进行性神经变性,目前尚无治疗。在MPS IIIA的小鼠模型中评估了载体腺相关病毒(AAV)RH.10-CAG-SGSH(LYS-SAF302)纠正疾病病理的能力。lys-SAF302以三种不同剂量(8.6e+08、4.1e+10和9.0e+10+10个载体基因组[VG]/动物)注射到尾状pe虫/纹状体/纹状体和thalamus的三种不同剂量(8.6e+08、4.1e+10和9.0e+10和9.0e+10载体基因组[VG]/动物)中施用。lys-SAF302能够依赖于纠正剂量或显着降低HS储存,GM2和GM3神经节蛋白的继发性积累,泛素反应性轴突球体,溶酶体膨胀,溶酶体膨胀以及毒液膨胀在12周和25周后的神经毒素流量。要研究大动物大脑中的SGSH分布,将LYS-SAF302注入了狗的皮层白质(1.0e+12或2.0e+12 Vg/Animal)和cynomolgus猴子(7.2e+11 Vg/an-imal)。在78%(注射后4周)中检测到78%的SGSH酶活性至少高于内源水平的20%(狗)的增加至少高于内源性水平。综上所述,这些数据验证了脑室内AAV的给药,作为实现MPS IIIA中疾病疾病的广泛酶分布和纠正的有前途的方法。
摘要:胚泡sp。是一种广泛的肠道原生动物,经常感染人类和动物群体。尽管在全球范围内具有负担和人畜共患的潜力,但在与人类接触的动物群体中,流行病学研究仍然有限。因此,北非有史以来最大的调查是在埃及进行的,目的是调查胚泡sp的患病率和亚型(ST)分布。动物。为此,从鸡(217),牛(373),狗(144)和猫(155)中,总共收集了889个粪便标本。然后将这些标本筛选为存在胚泡sp。使用定量的实时PCR,然后使用分离株进行亚型。胚泡sp的总体患病率。达到9.2%(82/889),鸡的感染率最高(17.0%)和家养牛(11.0%),强调了这两个动物群体的寄生虫的主动循环。相比之下,猫(2.6%)的患病率低和狗中的寄生虫缺乏表明宠物不是胚泡sp的天然宿主。ST10和ST14在很大程度上主要是牛,并确定两个ST代表牛适应于牛的ST。在该动物群体中,一个ST3和一个ST4分离物的报告可以通过人类到动物的意外人畜共患病来解释。除了家禽中的一个亚型分离物以外的所有属于ST7,被认为是禽类。剩余的ST14分离物的存在可能反映了鸟类和牛粪之间的接触中的瞬时感染。相同的环境污染也很可能是四只阳性猫中三只ST14感染的来源,其余动物被ST3感染是人向动物传播的结果。这些事件和亚型数据以及先前在埃及人群中收集的数据,这意味着家禽可以作为人畜共动性传播的储层发挥重要作用,而牛和宠物并非如此。
由安全多方计算作为保护隐私数据分析工具的应用,并确定遗忘的转移是其主要实践推动者之一,我们提出了对随机量子的实际实现。仅使用对称的cryp-图表原始素来实施承诺,我们就可以构建计算清除的随机遗漏转移,而无需公开密钥加密或对对抗设备施加限制的假设。我们表明,该协议是在基于无法区分的安全性概念下安全的,并展示了测试其现实世界中的实验实现。然后将其安全性和性能与量子和经典替代方案进行比较,显示了基于嘈杂的存储模型和公共密钥密码学的现有解决方案的潜在优势。
Artus Army Borges,Armando Borges。嫌疑人。总环境科学,2024,938,pp.173197