我们保卫世界上最伟大的国家——一个建立在为所有人提供机会的承诺之上的民主国家。这个国家的人口结构与我们生活的环境相似——不断变化——国防部必须做出改变,以维持和维持其未来的力量。只要我们真正代表了我们的民主,我们就是一支更强大、更有意义的力量。国防部将多样性视为一项战略要务。不同的背景和经历带来了本质上不同的观点和思维方式,这是组织创新的关键。我们通过利用所有成员的多样性并创造一个包容性的环境来获得战略优势,在这个环境中,每个成员都受到重视并被鼓励提供对创新、优化和组织任务成功至关重要的想法。
感知在各种机器人应用中起着至关重要的作用。但是,现有的良好的数据集偏向自动驾驶场景,而未标记的SLAM数据集则很快过于拟合,并且通常缺乏环境和域变化。为了扩大这些领域的边界,我们介绍了一个名为MCD(Multi-campus数据集)的全面数据集,其中包含各种感应方式,高准确的地面真相以及在三个欧亚大学的欧亚大学校园内的挑战性环境。MCD包括CCS(经典的圆柱旋转)和NRE(非重复性环球)LIDAR,高质量的IMU(惯性测量单元),相机和UWB(URWB(Ultra-Wideband))传感器。更重要的是,在开创性的努力中,我们引入了29堂课的语义注释,超过59k稀疏的nre lidar扫描
采用替代能源和电力系统将在DLODs 7中具有含义,这些含义的性质将根据所考虑的技术以及所考虑的能力的具体需求而有所不同。防御能力以及相关的设备,平台和系统,支持基础架构,操作概念,学说和物流管理继续发展。在上个世纪或更多世纪,基于碳氢化合物的能源和功率系统在国防应用中的普遍存在决定了当前的方法受碳氢化合物作为作为储能和分配的主要手段的作用的重大影响。对这种方法的任何偏差都将具有广泛的考虑因素,远远超出了替代方法的技术可行性。
Batyypolypus和Muusoctopus的分类学长期以来一直被原始的差异和难以区分形态学分类而困惑。我们的目的是将DNA条形码与物种划界技术和成熟雄性的形态学鉴定结合在一起,以鉴定北部亚特兰氏菌中存在的沐浴型和muusoctopus物种,并提供有关物种分布的其他信息。From 298 specimens collected during biannual Deepwater Timeseries cruises and other aligned surveys undertaken by Marine Scotland onboard MRV Scotia between 2005–19, we identified Bathypolypus arcticus, B. ergasticus, B. bairdii, B. sponsalis, B. pugniger, Muusoctopus normani and M. johnsonianus as well as an unidentified我们得出的结论可能是一种新物种。我们显示了DNA条形码在识别难以区分的物种(例如深海章鱼)方面的实用性。像我们这样的研究对于对此类群体的分类法的清晰度至关重要,并确定其中物种的真实多样性和分布。
摘要 本章主张采用结构性不公正方法来治理人工智能。结构性不公正包括分析和评价两个部分。分析部分包括社会科学中众所周知的结构性解释。评价部分是一种正义理论。结构性不公正是一个强大的概念工具,它使研究人员和从业者能够识别、表达甚至预测人工智能偏见。本章以人工智能中因结构性不公正而产生的种族偏见为例。然后,本章介绍了哲学家 Iris Marion Young 提出的结构性不公正概念。此外,本章还认为结构性不公正非常适合作为一种人工智能治理方法,并将这种方法与从危害和利益分析或价值陈述开始的替代方法进行了比较。本章表明,结构性不公正为多样性、公平和包容性的价值观和关注提供了方法论和规范基础。本章最后对“结构”和责任的概念进行了展望。结构的概念是正义的核心。一个开放的理论研究问题是人工智能本身在多大程度上是社会结构的一部分。最后,责任的实践是结构性不公正的核心。即使他们不能对结构性不公正的存在负责,每个人和每个组织都有责任在未来解决结构性不公正问题。
“水下时间”仅受潜水员疲劳和任务时间压缩的限制;原本需要一周时间的维护任务(包括计算舱和水下时间)可以在一天内完成。Can-Dive 已经研究 Newtsuit 三年了,它仍处于研发阶段,但计划于今年进行高级操作试验。这一发展最终可能被证明是一个完整的循环 spinotaf,它从航空航天技术转移,并最终产生可转移到航空航天系统的技术进步。NASA 正在研究用于舱外活动的宇航服设计,因为
扩散模型在图像生成中表现出了前所未有的ca。然而,它们从原始训练集中纳入并扩大了数据偏差(例如性别,年龄),从而限制了产生的IMEG的多样性。在本文中,我们在基于图像集的重新函数的指导下,使用增强学习(RL)提出了一种面向多样性的细调方法(RL)。具体而言,所提出的奖励函数(表示为多样性奖励),利用一组生成的信息来评估当前生成分配W.R.T.的覆盖范围。参考分布,由一组无偏见的图像表示。建立在分布差异估计的概率方法的基础上,差异奖励可以有效地用一小部分图像来测量相对分布差距。我们进一步将扩散过程作为多步决策问题(MDP),并通过最大化多样性奖励来应用策略梯度方法来微调扩散模型。在放样后选择任务上验证了奖励,其中根据多样性奖励值选择了最多样化的图像的子集。我们还展示了我们的RL微调框架的有效性,可以通过不同类型的扩散模型(包括班级条件模型和文本条件模型,例如stablediffusion)增强图像生成的多样性。
摘要:传统上,保护关注高危物种和相对完整的生态系统。随着人口和我们的全球影响力的增长,更多的物种和生态系统处于危险之中,而完整的生态系统仍然存在,城市化是主要的促成因素。城市及其居民将留在这里,城市化的普遍性通常在高保护价值的地区附近,需要重新考虑城市生态系统和城市绿色空间的保护价值。我们的目的是探索此类行动的实际方面。城市生态系统再生将要求将城市生态系统再生策略纳入整体保护政策。在这里提倡的城市生态系统再生的新型范式,最大程度地提高了城市空间支持生物多样性的能力,同时减少了不良结果并增强了人类的福祉。城市加剧生物学入侵,气候变化和其他生态系统降级因素的潜力在制定城市空间保护策略时需要特别关注,这是由于预测的城市在全球范围内进一步传播而至关重要的。
• 建立信任,让员工了解数据披露的重要性以及企业如何使用这些数据推动变革。 • 通过自我身份识别收集受保护特征的数据 • 进行趋势分析并持续衡量内部设定的 KPI,以跟踪不同级别细分市场代表性下降的位置及其原因(招聘、晋升、离职率) • 使用多个数据流和数据叠加来加深对员工的了解。
