硅胶因其与组织和体液的兼容性而被广泛应用于医疗器械,使其成为植入物和可穿戴设备的多功能材料。为了有效地将硅胶装置粘合到生物组织上,需要使用可靠的粘合剂来形成持久的界面。本文介绍了一种基于硅胶的生物粘合剂 BioAdheSil,旨在为界面两侧提供强大的粘合力,促进不同基质(即硅胶装置和组织)之间的粘合。粘合剂的设计侧重于两个关键方面:湿组织粘合能力和基于组织渗透的长期整合。BioAdheSil 是通过将软硅胶低聚物与硅氧烷偶联剂和吸收剂混合而配制而成,用于将疏水性硅胶装置粘合到亲水性组织上。加入可生物降解的吸收剂可消除表面水并控制孔隙率,而硅烷交联剂可提供界面强度。随着时间的推移,BioAdheSil 通过酶降解从不渗透性转变为渗透性,形成有利于细胞迁移和组织整合的多孔结构,从而可能实现持久的粘附。实验结果表明,BioAdheSil 的性能优于商用粘合剂,并且不会在大鼠身上引起不良反应。BioAdheSil 具有将硅胶装置粘附到湿组织上的实用性,包括长期植入物和经皮装置。在这里,它的功能通过气管支架和左心室辅助装置管线等应用得到展示。
由于大型语言模型(LLMS)通过不同的提示方法(例如思想链,思想计划)显示出有效性,因此我们发现这些方法在数学原因任务上彼此形成了极大的互补性。在这项工作中,我们提出了XOT,这是一个通过不同的推理思想提示LLM来解决问题的解决框架。对于每个问题,XOT始终从选择最合适的方法开始,然后迭代执行每种方法。在每次迭代中,XOT都会积极检查一般答案的有效性,并结合了外部执行者的反馈,从而使其能够在不同的提示中的不同提示之间进行动态切换。通过对10个流行数学推理数据集的大量实验,我们证明了我们提出的方法的有效性,并彻底分析了每个模型的优势。此外,经验结果表明,我们的框架与最近的工作是正交的,该工作改善了单个推理方法,并且可以进一步推广到逻辑推理领域。通过允许切换方法,XOT为统一框架中各种推理思想的协作整合提供了新的视角。
世界模型通过在环境中提供代理商的预测性表示,并使代理商能够推理未来并做出更明智的决定,从而在基于模型的增强学习(RL)中起着至关重要的作用。但是,仍然存在两个主要问题,限制了世界模型的应用。首先,当前方法通常仅使用特定于域的数据来训练世界模型,这使得概括地看不见的情况或适应环境中的变化具有挑战性。第二,在使用野生视频中训练世界模型时,很难定义动作。在这项工作中,我们通过从不同规模和大型现实世界的视频数据集中学习通用世界模型来解决这两个问题,并提取了潜在的动作。具体来说,我们的方法利用预先训练的视觉编码器将两个相邻帧的图像投射到状态中;然后,根据向量量化,将潜在作用提取到低维空间中;最后,使用潜在动作学习了动态功能。结果表明,在野外视频数据集中测试时,提出的通用世界模型可以成功提取任意相邻帧的潜在动作。此外,在适应看不见的环境时,仅对少量域内数据进行微调可以显着提高通用世界模型的准确性。
气候就业研究所的成立基于这样一个立场:美国正面临两大历史性危机——气候变化危机和种族、性别、收入、财富、机会和希望不平等危机。为了避免气候灾难,我们必须立即采取大胆行动降低温室气体排放。在我们重建经济、确保气候安全的同时,我们有巨大的机会纠正历史不平等,创造一个更加公平、公正和包容的经济和社会。数万亿美元的投资和数千万个新就业岗位将被用于建设我们所需的清洁能源经济。CJI 与工会、政策制定者、环保领袖和其他人士密切合作,在纽约和全国各地制定了雄心勃勃的气候就业计划,以应对气候变化,同时确保新的清洁能源工作是维持家庭和社区的良好工会职业。历史表明,一份高薪和优厚福利的工作是减少收入、财富、种族和性别不平等并开辟进入中产阶级道路的最佳方式之一。
离子阱系统具有较长的相干时间和较强的离子间相互作用,可实现高保真度的双量子比特门,是一种很有前途的量子信息处理方式 [1]。目前,大多数实现都由复杂的自由空间光学系统组成,其较大的尺寸以及对振动和漂移的敏感性会限制离子阵列的保真度和可寻址性,从而阻碍向大量量子比特的扩展。最近,基于集成光子学的设备和系统已被证明是解决这些挑战的一种途径 [2,3]。到目前为止,这些先前的集成演示仅限于使用单一线性偏振光(特别是横向电场 (TE))进行操作,该偏振光名义上与离子阱芯片表面平行。然而,不同的偏振对于实现先进的离子阱系统的许多操作至关重要 [4],这引起了人们对开发偏振多样化发射器的兴趣 [5,6]。例如,基于集成光子学的架构涉及 TE 和横磁 (TM) 偏振光(如图 1a 中的配置),对于实现先进的离子冷却方案必不可少,这种方案可在几种非简并陷阱振动模式下提供亚多普勒温度,例如偏振梯度冷却和电磁诱导透明冷却 [4]。在本文中,我们设计并通过实验演示了一对集成的 TE 和 TM 发射光栅,工作波长为 422 nm,对应于 88 Sr + 离子的 5 2 S 1/2 到 5 2 P 1/2 跃迁,这是离子控制的关键跃迁。我们实施了一种自定义的优化设计算法,以实现发射单向聚焦光束的双层、切趾和曲面光栅,实验测量的光斑尺寸为 TE 光栅 7.6 μm × 4.3 μm,TM 光栅 5.0 μm × 3.6 μm,目标离子高度距芯片表面 50 μm。据我们所知,这项工作代表了用于捕获离子系统的集成 TM 发射光栅的首次开发,因此,它为基于集成光子学的捕获离子量子系统涉及多个极化的高级操作奠定了基础。
早期的家庭访问计划提供了独特的机会,可以增强父母及其婴儿或幼儿的心理健康。虽然家庭访问计划的设计和资金来源差异很大,但大多数这些计划中常见的几个功能都可以利用以满足家庭与心理健康相关的需求。这些功能之一是与家庭持续接触,这可以帮助家庭访客与父母建立信任,支持性关系;这些关系反过来又有助于将家庭保留在计划中,并从服务中受益。另一个是提供指导和指导,以促进反应迅速的育儿,并培养亲子关系,这是儿童社会情感福祉和发展的基础的条件。通过直接服务或将家庭与其他计划联系起来,他们努力帮助家庭克服与健康问题和基本需求有关的挑战,家庭访问计划也可以显着减轻父母的压力并增强家庭福祉。
摘要:越来越多的二级代谢产物的隔离和鉴定具有独特的骨骼,并具有来自海洋微生物的多种生物活性,从而赢得了许多天然产物化学家的利益。越来越强调如何培养微生物以增强代谢物的化学多样性并避免重新发现已知的化学物质。鉴于次生代谢产物作为微生物之间的交流方式的重要性,已经引入了微生物共培养。通过模仿自然栖息地中微生物群落的生长模式,预计共培养策略可以刺激在传统的实验室培养条件下保持休眠状态的生物合成基因簇,从而诱导新的二级代谢产物的产生。与以前的评论不同,主要关注发酵条件或来自海洋衍生的共同生产菌株的代谢物多样性,涵盖了从20122年到2022年的海洋来源的共培养微生物,并转向特定的讨论,突出了针对海洋衍生的微生物的选择,尤其是在选择的途径,尤其是在海上衍生的疾病。为了方便而快速检测新型代谢物,因为这些代谢物在共培养中很重要。最后,还讨论了分子的结构和生物活性多样性。对作者的观点的行为讨论了共同文化的挑战和前景。
摘要:在宏基因组学时代,从人类口腔的各个角落(从唾液到牙菌斑再到舌头表面)中鉴定出的病毒多样性加速增长。这种快速扩展表明我们对口腔病毒多样性的理解并不完整,只有少数研究结合了被动口水收集和宏基因组测序方法。在这项先导研究中,我们从杜克狐猴中心(美国北卡罗来纳州达勒姆)的健康工作人员那里获得了 14 个样本,以确定可在人类被动口水样本中鉴定出的病毒多样性。本研究使用高通量测序和病毒宏基因组工作流程鉴定了 3 种指环病毒、9 种 cressdnaviruses、4 种 Caudoviricetes 大噬菌体、29 种微病毒和 19 种 inoviruses 的完整基因组。这里介绍的结果扩展了我们对北卡罗来纳州(美国)人类口腔病毒组的脊椎动物感染和微生物感染病毒多样性的理解。
重组腺相关病毒 (AAV) 是神经科学研究中常用的基因传递载体。它们具有两个可工程化的特征:衣壳(外部蛋白质壳)和货物(封装的基因组)。可以修改这些特征以分别增强细胞类型或组织向性并控制转基因表达。已经鉴定出几种具有独特向性的工程化 AAV 衣壳,包括具有增强的中枢神经系统转导、细胞类型特异性和神经元逆向运输的变体。将这些 AAV 与现代基因调控元件和最先进的报告、传感器和效应货物配对,可以实现高度特异性的转基因表达,以对脑细胞和回路进行解剖和功能分析。在这里,我们讨论了最近的进展,这些进展提供了一个全面的(衣壳和货物)AAV 工具包,用于遗传访问分子定义的脑细胞类型。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该预印本版的版权持有人于2023年6月24日发布。 https://doi.org/10.1101/2023.06.24.545427 doi:biorxiv preprint