固体聚合物电解质 (SPE) 有可能使锂离子和锂金属电池实现高能量密度、先进的制造能力和增强的安全性。然而,缺乏足够的分子尺度的锂离子传输机制见解和对关键相关性的可靠理解,往往会限制新材料的修改和设计范围。此外,对聚合物化学结构细微变化的敏感性(例如,选择特定的键或化学基团)通常被忽视为潜在的设计参数。在本次演讲中,我们将使用三个示例来展示原子分子动力学 (MD) 模拟如何补充实验研究并揭示聚合物结构变化与 Li+ 传输能力之间重要的分子尺度相关性。对于传统的 SPE,我们证明通过调整聚合物链的化学结构,可以实现从 Li+ 和聚合物链段运动状态之间的强耦合到解耦状态的转变。在单离子导电聚合物凝胶中,我们表明聚合物主链的微小修改显着增强了 Li+ 传输。最后,我们展示了 MD 模拟如何指导由聚轮烷超分子自组装组成的新型 SPE 的设计,其中编织线性链和环状分子的形态允许将 SPE 中的机械和传输特性解耦。
同行评审的论文Galdon G.,Pourhabibi Zarandi N.,Deebel,N.,Zhang,S.,Cornett,O. Sadri-Ardekani,H。“ 3D器官系统中人类XY和XXY未成熟睾丸的体外产生”,生物工程2024,11,677
电子邮件:liakhdi@ornl.gov 电子邮件:quant4me@gmail.com 电话:+1(865)574-7783 Skype:DmitryLyakh 职业经历 • 计算科学家:化学、材料和量子信息科学的高级高性能计算(量子计算)。美国国家计算科学中心,橡树岭国家实验室,田纳西州橡树岭:2014 年 9 月 - 现任。 • 博士后研究员。美国国家计算科学中心,橡树岭国家实验室(导师:T. Straatsma 博士):“从头算量子化学的新方法和 GPU 加速算法”:2013 年 12 月 - 2014 年 8 月。 • 兼职博士后研究员。美国佛罗里达州盖恩斯维尔佛罗里达大学量子理论项目 RJ Bartlett 教授小组:“开发和大规模并行实施用于电子结构计算的精确从头算量子多体方法”:2009 年 6 月 – 2013 年 12 月。• 初级研究员。乌克兰哈尔科夫国立大学化学学院天体化学组:2008 年 7 月 – 2009 年 5 月。• 讲师。乌克兰哈尔科夫国立大学化学学院。课程:量子化学和量子力学、线性代数和化学家计算机编程:2008 年 9 月 – 2009 年 5 月。
这种经验对于不同方面非常有用 - 实际上学习新方法,在机构之间建立强大的合作,并获得完全不同的系统(研究,小组会议)的经验。我为下一个项目使用获得的知识。后来实施了表相位的检测工具,后来也在主机和家庭机构中进行了测试。
基于 Al/AlO x /Al 约瑟夫森结的超导量子比特是通用量子计算机物理实现最有希望的候选者之一。由于可扩展性和与最先进的纳米电子工艺的兼容性,人们可以在单个硅芯片上制造数百个量子比特。然而,由非晶电介质中的双层系统(包括隧道势垒 AlO x )引起的这些系统中的退相干是主要问题之一。我们报告了一种约瑟夫森结热退火工艺开发,用于结晶非晶势垒氧化物(AlO x )。获得了热退火参数对室温电阻的依赖关系。所开发的方法不仅可以将约瑟夫森结电阻提高 175%,还可以将其降低 60%,R n 的精度为 10%。最后,提出了关于隧道势垒结构修改的理论假设。建议的热退火方法可用于为广泛使用的固定频率 transmon 量子比特形成稳定且可重复的隧道屏障和可扩展的频率调整。
主要作者:Nadejda Komendantova、Dmitry Erokhin、Elena Rovenskaya 撰稿人:Irina Dallo、Laure Fallou、Carmit Rapaport、Rosa Vicari、Abraham Yosipof
Alard,Emilie&Butnariu,Aura-Bianca&Grillo,Marta&Kirkham,Charlotte&Zinovkin,Dmitry&Newnham,Louise&MacCiochi,Jenna&Pranjol,Zahid,Zahid。(2020)。抗癌免疫疗法的进展:CAR-T细胞,检查点抑制剂,树突状细胞疫苗和溶瘤病毒以及新兴的细胞和分子靶标。癌症。12。10.3390/CANCERS12071826。
Leitenstorfer 1,Andrey S Mosquenk 2,Tobias CampFrath 3,4,第8号,Dmitry Turchinovich,Tanaka 10,Tanaka 10,Andrea G Markelz 11,17,Peter Uhd Jepsen,26 ,Xiaobang Shang John Cunningham 22, *