DNA 甲基化 (DNAme) 是一种关键的表观遗传标记,可调节维持整体基因组稳定性的关键生物过程。鉴于其多效性功能,对 DNAme 动力学的研究至关重要,但目前可用的干扰 DNAme 的工具存在局限性和严重的细胞毒性副作用。在这里,我们提出了允许通过 DNMT1 耗竭进行可诱导和可逆 DNAme 调节的细胞模型。通过动态评估通过细胞分裂诱导的被动去甲基化的全基因组和位点特异性效应,我们揭示了 DNMT1 和 DNMT3B 之间的协同活动,但不是 DNMT3A,以维持和控制 DNAme。我们表明,DNAme 的逐渐丧失伴随着异染色质、区室化和外周定位的逐渐和可逆变化。DNA 甲基化丧失与由于 G1 停滞而导致的细胞适应性逐渐降低相吻合,并伴有轻微的有丝分裂失败。总之,该系统可以进行具有精细时间分辨率的 DNMT 和 DNA 甲基化研究,这可能有助于揭示 DNAme 功能障碍与人类疾病之间的病因联系。
在复制过程中以细胞谱系依赖性方式(图1a)。在哺乳动物中,在配子发生中发生了第二次甲基化重编程。在生殖细胞发育的早期阶段,全局DNA甲基化模式被去除,并在雄性的促细胞和女性中生长的卵母细胞的细胞增多症之前重新建立(Bird 2002)。以性别依赖性的方式调节了一百多个基因在常染色体上的表达,这些基因被称为烙印基因。这些基因的特征是差异甲基化区域(DMR),在雄性和女性基因组中经历了不同的DNA甲基化。通常,在与全球DNA甲基化相同的阶段,在生殖细胞中建立了DMR甲基化模式(Kaneda等人。2004)。 在哺乳动物中,已经鉴定出了三个DNA甲基转移酶,DNMT1,DNMT3A和DNMT3B(Bestor等,1988; Okano等人。 1998)。 dnmt3a和dnmt3b负责在植入阶段胚胎和生殖细胞分化过程中通过其从头型DNA甲基化活性产生的DNA甲基化模式(Okano等人1999)。 据报道, dnmt3样(DNMT3L)是DNMT3家族的成员,但不具有DNA甲基化活性,据报道对于生殖细胞中的全球甲基化是必不可少的(Bourc'his等人。 2001; Hata等。 2002)。 建立了DNA甲基化模式后,维持型DNA甲基转移酶DNMT1忠实地将它们传播到DNA复制后的下一代。2004)。在哺乳动物中,已经鉴定出了三个DNA甲基转移酶,DNMT1,DNMT3A和DNMT3B(Bestor等,1988; Okano等人。1998)。 dnmt3a和dnmt3b负责在植入阶段胚胎和生殖细胞分化过程中通过其从头型DNA甲基化活性产生的DNA甲基化模式(Okano等人1999)。 据报道, dnmt3样(DNMT3L)是DNMT3家族的成员,但不具有DNA甲基化活性,据报道对于生殖细胞中的全球甲基化是必不可少的(Bourc'his等人。 2001; Hata等。 2002)。 建立了DNA甲基化模式后,维持型DNA甲基转移酶DNMT1忠实地将它们传播到DNA复制后的下一代。1998)。dnmt3a和dnmt3b负责在植入阶段胚胎和生殖细胞分化过程中通过其从头型DNA甲基化活性产生的DNA甲基化模式(Okano等人1999)。dnmt3样(DNMT3L)是DNMT3家族的成员,但不具有DNA甲基化活性,据报道对于生殖细胞中的全球甲基化是必不可少的(Bourc'his等人。2001; Hata等。 2002)。 建立了DNA甲基化模式后,维持型DNA甲基转移酶DNMT1忠实地将它们传播到DNA复制后的下一代。2001; Hata等。2002)。 建立了DNA甲基化模式后,维持型DNA甲基转移酶DNMT1忠实地将它们传播到DNA复制后的下一代。2002)。建立了DNA甲基化模式后,维持型DNA甲基转移酶DNMT1忠实地将它们传播到DNA复制后的下一代。dnmt1优先甲基化半甲基化的CpG位点,这些位点出现在DNA复制和修复后。
2型糖尿病(T2D)是一种具有实质性遗传风险的多因素疾病,对此尚不完全了解潜在的生物学机制。我们通过分析37个发表的T2D基因组 - 广泛关联研究(GWAS)的遗传数据(GWAS),鉴定了多种概念T2D遗传簇,代表> 140万个个体。我们通过650个T2D相关的遗传变异和110 T2D相关的性状实施了软聚类,捕获了已知和新颖的T2D群集,具有不同的心脏代谢性状关联,跨两个独立的生物库,代表多样化的遗传种群,非洲人,非洲人,N = 21,906; n = 21,906; Admixed Assixed Assix; n = East; n = East; n = East; n = East; n = East; n = 142; n = 90,093;十二个遗传簇富含特定的单细胞调节区域。来自祖先组之间的分布分布的几个多基因评分,包括东亚血统中与脂肪营养不良相关的多基因风险的比例明显更高。T2D风险在欧洲亚群中的BMI为30 kg/m 2的BMI,东亚亚洲亚洲人口中的24.2(22.9–25.5)kg/m 2;调整了集群特异性遗传风险后,东亚组的等效BMI阈值增加到28.5(27.1–30.0)kg/m 2。因此,这些多种能式T2D遗传簇涵盖了更广泛的生物学机制,并提供了初步见解,以解释T2D风险概况中与祖先相关的差异。
正常细胞中的 DNA 甲基化和组蛋白修饰 DNA 甲基化是最著名、研究最全面的表观遗传机制。DNA 甲基化的主要作用是阻止基因表达。DNA 甲基化意味着在胞嘧啶核苷酸的 5′ 位置共价添加一个甲基 (-CH 3 )。1,2 负责添加甲基的酶称为 DNA 甲基转移酶 (DNMT)。哺乳动物有五种 DNMT,DNMT1、DNMT2、DNMT3a、DNMT3b 和 DNMT3L。其中,只有 DNMT1、DNMT3a 和 DNMT3b 可以将甲基从 S-腺苷甲硫氨酸 (SAM) 转移到 DNA 上。3 DNMT1 负责维持 DNA 甲基化。在复制过程中,DNMT1 转录新合成链上预先存在的甲基化标记。3 然而,在体内研究中,DNMT1 已被证明
抽象变构可以动态控制蛋白质功能。一个范式的例子是DNA甲基化维持的紧密策划过程。尽管变构站点具有根本的重要性,但它们的识别仍然是高度挑战。在这里,我们对基于基于活动的抑制剂Decitabine的基本维护甲基化机制进行了CRISPR扫描,以发现调节DNMT1的变构机制。与非共价DNMT1抑制相反,基于活性的选择暗示了DNMT1功能中催化结构域以外的许多区域。通过计算分析,我们从活跃位点的DNMT1远端中识别出涵盖多层自身抑制性界面和未表征的BAH2结构域的突变的远端突变点。我们将这些突变表征为功能获得,表现出增加的DNMT1活性。将我们的分析推送到UHRF1中,我们辨别了多个域中的功能收益突变,包括跨自抑制性TTD – PBR界面的关键残基。共同研究了基于活动的CRISPR扫描以提名候选变构站点的实用性,更广泛地介绍了新的分析工具,从而进一步完善了CRISPR扫描框架。
AML和MD的部分原因是转录因子(即Runx1,NPM1)中的遗传替代,以及表观遗传修饰的基因(即MLL,DNMT3A),导致肿瘤抑制基因失活,从而使不成熟细胞的扩散产生。3在DNA甲基转移酶(DNMT)中的改变特异性导致DNA高甲基化,这有助于通过启动子失活通过启动子灭活基因沉默,并且可以由HMA靶向,HMA可以模仿天然核苷残基并在DNA中取消核苷。一旦合并,HMAS被DNMT1作为胞嘧啶处理,但是这种相互作用会产生一种不可逆的DNA-DNMT1加合物,需要DNA损伤修复才能解决。这会导致DNMT1的损失,因为DNA蛋白加合物被DNA损伤响应途径降解。9损失
NCH612是一种患者衍生的神经胶质瘤细胞系,已知在IDH1基因中具有突变,特别是IDH1 R132H变体。这种突变通常在神经胶质瘤中发现,并且与诸如胶质瘤CpG岛甲基表型(G-CIMP)等表观遗传学变化有关。这些表观遗传变化会导致肿瘤抑制基因的沉默,从而使IDH1突变胶质瘤成为表观遗传疗法的靶标。NCH612细胞系显示了对DNA甲基转移酶抑制剂Decitabine(DAC)的特殊敏感性,该抑制剂(DAC)证明了通过降低DNMT1蛋白水平抑制细胞增殖和生长的能力,DNMT1蛋白水平是一个关键的表观遗传调节剂。nCH612特别是对1p/19q染色体臂的部分缺失,这是一种通常与某些与神经胶质瘤亚型相关的特征。
摘要:表观遗传学在慢性疼痛上的作用尚未充分表征。DNA组蛋白甲基化受到从头甲基转移酶(DNMT1-3)和十种二加氧酶(TET1-3)至关重要的调节。证据表明,与伤害感受相关的不同中枢神经系统区域,即背根神经节,脊髓和不同的大脑区域都改变了甲基化标记。在DRG,前额叶皮层和杏仁核中发现了全局甲基化的降低,这与DNMT1/3A表达降低有关。相比之下,TET1和TET3的甲基化水平和mRNA水平升高与炎性和神经性疼痛模型中的增强性疼痛性超敏反应和异常性有关。由于表观遗传机制可能负责慢性疼痛状态中描述的各种转录修饰的调节和协调,因此,通过这项研究,我们旨在评估几个大脑区域中神经性疼痛中TET1-3和DNMT1/3A基因的功能作用。在神经性疼痛的不幸的神经损伤大鼠模型中,手术后21天,我们发现内侧前额叶皮层中的TET1表达增加,并且在尾甲状腺肿和杏仁核中的表达降低。 TET2在内侧丘脑中被上调。内侧前额叶皮层和尾状甲状腺中的TET3 mRNA水平降低;在尾状药物和内侧丘脑中,DNMT1被下调。使用DNMT3A观察到表达的统计学显着变化。我们的结果表明,在神经性疼痛的背景下,这些基因在不同大脑区域中具有复杂的功能作用。DNA甲基化和羟甲基的概念是细胞类型的特定细胞类型,而不是组织特定的,以及在建立神经性疼痛模型后的时间顺序差异基因表达的可能性。
DNA 甲基化由从头甲基转移酶 DNMT3a 和 DNMT3b 建立,并由 DNMT1 在细胞分裂过程中维持,DNMT1 优先识别半甲基化 DNA 而非非甲基化 DNA。1 DNA 甲基化可被十一种易位甲基胞嘧啶双加氧酶 (TET) 去除,包括 TET1、TET2 和 TET3。2 组蛋白修饰由不同的酶催化。各种组蛋白乙酰转移酶 (HAT) 和组蛋白去乙酰化酶 (HDAC) 催化或去除赖氨酸上的乙酰化。组蛋白甲基转移酶 (HMT) 和脱甲基酶催化或去除赖氨酸上的甲基化,蛋白质精氨酸甲基转移酶 (PRMT) 催化组蛋白尾部的精氨酸甲基化。小分子抑制剂是从小分子库中筛选出来的化合物,可干扰特定的生物过程。一些小分子抑制剂针对表观遗传过程,用于基础研究和治疗开发。这些抑制剂的靶标通常是表观遗传标记的写入者或擦除者。DNA 去甲基化剂,如 DNA 甲基转移酶抑制剂 (DNMTi),可降低 DNA 甲基化,已用于抗癌治疗。
1 波兰科学院 Nencki 实验生物学研究所细胞信号传导和代谢紊乱实验室,02-093 华沙,波兰;a.dobosz@nencki.edu.pl (AMD);j.janikiewicz@nencki.edu.pl (JJ);a.dziewulska@nencki.edu.pl (AD) 2 波兰科学院核物理研究所跨学科研究部,31-342 克拉科夫,波兰;anna.maria.borkowska@uj.edu.pl (AMB);Ewelina.Lipiec@ifj.edu.pl (EL); Wojciech.Kwiatek@ifj.edu.pl (WMK) 3 波兰克拉科夫雅盖隆大学物理、天文与应用计算机科学学院,30-348 4 波兰科学院 Nencki 实验生物学研究所分子医学生物化学实验室,02-093 华沙,波兰;p.dobrzyn@nencki.edu.pl * 通讯地址:a.dobrzyn@nencki.edu.pl © 检查 ^ x 更新
