风能利用率的提高以及需求的增长正在影响输电系统的区域负荷。传统上,升级现有线路和建设新线路是增加网络容量和减少拥堵的常用方法。然而,环境、社会和技术挑战正在鼓励网络运营商在未来规划中采取措施提高现有网络的利用率。这里开发了一个混合整数线性规划模型,将各种替代方案(包括动态线路额定值、储能系统和分布式静态串联补偿)集成到网络规划过程中。使用多阶段方法,研究了这些资产的共同优化规划,并将其与传统的重新布线方法进行了比较。IEEE RTS 24 总线系统显示了共同优化的好处,在选定区域风能贡献较大。
缩写表 BIA – 移民上诉委员会 CFR – 联邦法规 DHS – 美国国土安全部 DoS – 美国国务院 EAD – 工作授权文件 FNC – 最终不确认表 I-131 – 旅行证件、假释证件和抵达/离开记录申请表 I-765 – 工作授权申请表 I-797 – 行动通知(批准通知)表 I-797C – 行动通知(收据通知)表 I-821 – 临时保护身份申请表 I-9 – 就业资格验证表 I-912 – 费用减免申请表 I-94 – 抵达/离开记录 FR – 联邦公报 政府 – 美国政府 IER – 美国司法部民权司移民和雇员权利科 IJ – 移民法官 INA – 移民和国籍法 PDF – 便携式文档格式 SAVE – USCIS系统性外国人福利核查计划秘书 – 国土安全部长
Rothamsted Research 是一家担保有限公司,注册办事处:如上所述。在英格兰注册编号 2393175。注册慈善机构编号 802038。增值税编号 197 4201 51。由 John Bennet Lawes 于 1843 年创立。
1 约翰·英纳斯中心,诺里奇研究园区,诺里奇,英国;2 伯明翰大学生物科学学院,伯明翰,英国;3 约翰·宾厄姆实验室,剑桥,英国;4 澳大利亚堪培拉联邦科学与工业研究组织、农业与食品部 (CSIRO);5 意大利菲奥伦佐拉达尔达基因组学和生物信息学研究中心农业研究与经济理事会;6 欧洲分子生物学实验室,欧洲生物信息学研究所,威康基因组园区,欣克斯顿,英国;7 罗瑟姆斯特德研究中心,哈彭登,英国;8 昆士兰大学昆士兰农业与食品创新联盟,圣卢西亚,澳大利亚;9 诺丁汉大学植物与作物科学系,萨顿博宁顿校区,拉夫堡,英国; 10 意大利博洛尼亚大学农业与食品科学系(DISTAL);11 加拿大萨斯卡通萨斯喀彻温大学作物发展中心;12 墨西哥埃尔巴丹国际玉米和小麦改良中心(CIMMYT)
通过纳米和微技术(量子点和微流体)的融合,我们创建了一个能够对人类血清样本中的传染性病原体进行多重、高通量分析的诊断系统。作为概念验证,我们展示了能够检测全球最流行的血液传播传染病(即乙型肝炎、丙型肝炎和 HIV)血清生物标志物的能力,样本量少(<100 µ L),速度快(<1 小时),灵敏度比目前可用的 FDA 批准方法高 50 倍。我们进一步展示了同时检测血清中多种生物标志物的精确度,交叉反应性最小。该设备可以进一步发展成为便携式手持式即时诊断系统,这将代表发达国家和发展中国家在检测、监测、治疗和预防传染病传播方面的重大进步。
摘要:花生(Arachis hypogaea L.)是一种全球重要的油籽和豆科粮食作物。然而,最常见的西班牙束状花生品种缺乏鲜种子休眠(FSD),这对花生的产量和质量造成了重大障碍。鉴于其经济意义,目前正在研究模型系统中导致 FSD 的机制和因素,这对花生栽培具有重要意义。最近的评论强调了在揭示遗传控制、分子机制以及影响不同植物物种发芽和休眠的生理和环境因素方面取得的显著进展。在此背景下,我们研究了有关花生 FSD 的最新研究成果,重点关注与 FSD 相关的遗传因素。此外,我们还探讨了旨在培育优良基因型以加强花生改良的尝试。
自 2019 年冠状病毒病 (COVID-19) 出现以来,全球公共卫生基础设施和系统以及社区范围内的合作和服务都面临着前所未有的挑战。疫苗开发立即成为我们所有科学、公共卫生和社区工作的中心。尽管 SARS-CoV-2 疫苗的开发可以说是过去 12 个月中最伟大、最明显的成就,但它们也是疫情期间最具争议和争论的问题之一。然而,疫苗开发的独特之处在于它与其试图服务的社区有着密切的关系;无论是作为一种有效和安全的预防措施进行的临床试验测试,还是作为一种有效的公共卫生工具在开发后“推广”的成功。这些关系产生了无数的复杂性,从基于社区的不信任到学术上争论的道德困境。事实上,COVID-19 疫苗竞赛的加速发展进一步加剧了这一现象,带来了新的伦理困境,需要对其进行研究以确保这些疗法在临床上继续取得成功,并恢复社会对临床医学的信任。在本文中,我们讨论了两个主要的伦理困境:(1) 在成功候选疫苗出现时继续进行新疫苗试验的平衡和 (2) 盲法安慰剂组的弊端。因此,我们讨论了解决这些伦理困境的六种不同方法:(1) 继续进行安慰剂对照试验,(2) 从安慰剂对照过渡到开放标签,(3) 仅对高风险优先组进行揭盲,(4) 过渡到盲法阶梯楔形交叉设计,(5) 进展到盲法活性对照阶梯楔形交叉试验,以及 (6) 进行随机阶梯楔形社区试验。我们还为疫苗试验后期的相关利益相关者提出了一种决策算法。重要的是要记住,COVID-19 疫情的突发性并不意味着可以对核心道德价值观做出妥协。事实上,围绕这一主题的讨论和所做出的决定将仍然是一个有力的案例研究,并将成为未来所有此类情景的一个不断参考的例子。
用于治疗 COVID-19 的药物研究仍然具有挑战性。SARS-CoV-2 通过血管紧张素转换酶 (ACE2) 受体进入人体。SARS-CoV-2 的 S(刺突)蛋白结构与 ACE2 受体的活性位点相互作用,该活性位点定义为肽酶结构域,由 Gln24、Asp30、His34、Tyr41、Gln42、Met82、Lys353、Arg357 组成。这项工作研究了三种喹啉类抗疟药物与 ACE2 受体肽酶结构域的相互作用。从蛋白质数据库下载了人 ACE2 受体的 X 射线晶体结构。使用 MarvinSketch 构建配体,并使用 LigandScout 中的 MMFF94 进行几何优化。能量最小化的配体对接至 ACE2 受体的肽酶结构域。结果表明,氯喹、羟氯喹和奎宁可以与 ACE2 受体肽酶结构域中的氨基酸残基相互作用。在这三种化合物中,奎宁对 ACE2 受体的亲和力最强(-4.89 kcal/mol),其次是羟氯喹(-3.87 kcal/mol)和氯喹(-3.17 kcal/mol)。总之,奎宁、氯喹和羟氯喹可以通过与 ACE2 受体肽酶结构域中的 Lys353 残基相互作用来阻断 SARS-CoV-2 病毒的感染,因此有可能用作 COVID-19 解毒剂。这项研究将为喹啉类抗疟药物抑制 SARS-CoV-2 病毒感染的机制提供更多见解。关键词:ACE2 受体,COVID-19,氯喹,羟氯喹,奎宁,SARS-CoV-2
简介:多酚氧化酶 (PPO) 是一种双活性金属酶,可催化醌的产生。在植物中,PPO 活性可能有助于抗生物胁迫和次生代谢,但对食品生产商来说是不利的,因为它会导致产品在收获后加工过程中变色和风味特征发生变化。在小麦 (Triticum aestivum L.) 中,在碾磨过程中从谷物的糊粉层释放出的 PPO 会导致面粉、面团和最终产品变色,从而降低其价值。同源组 2 染色体上的 PPO1 和 PPO2 旁系同源基因的功能丧失突变导致小麦粒中的 PPO 活性降低。然而,有限的自然变异和这些基因的接近性使得通过重组选择极低 PPO 小麦品种变得复杂。本研究的目标是编辑 PPO1 和 PPO2 的所有副本,以大幅降低优良小麦品种中的 PPO 籽粒活性。
这些方案是在患者对治疗没有反应并出现病毒学失败时开始的。如果怀疑出现这种情况,应与专家密切协调治疗患者,并且必须将血液样本送至 RITM 进行 HIV 药物耐药性检测,然后才能转为二线治疗。
