ETH AI中心汇集了所有部门和学科的AI基础,应用和影响的研究人员。从110多个教授职位,其自己的前提和奖学金计划的参与开始,该中心在研究这一关键技术方面就加强了ETH的强大立场。中心与欧洲及以外的最佳AI研究机构合作,以加速进步,支持初创企业和行业合作,并培养下一代AI研究人员,变革型领导者和企业家。
其他详细信息 根据收到的申请,申请人将被邀请于 2021 年 12 月 2 日至 3 日进行在线面试(面试具体时间将于 12 月 21 日通知)。 如果收到的申请数量较多,部分面试可能会安排在第二天。请您相应地计划。 广告不具承诺性 - 任何形式的拉票都将被取消资格。
○ 找工作 ○ 找主机 ○ 找资金 ○ 研究人员章程和守则 ○ 研究人员人力资源战略 ○ 养老金和 RESAVER ○ Science4refugees 计划
立场摘要Ifakara Health Institute(IHI)与卫生部通过国家疟疾控制计划,总统办公室,地区管理局和地方政府以及国家医学研究所(NIMR)共同实施了Malararia Malararia在Tanzania内部(MSMT2)项目的第二阶段。同时,IHI正在寻求一名精力充沛,熟练的后博士后研究员,以加入我们的团队,进行一项尖端的研究项目,专注于MSMT项目的第二阶段。成功的候选人将与多学科研究人员,公共卫生专业人员以及本地和国际利益相关者紧密合作,以增强和规模,以增强和扩展本地能力,以基于该项目的目标,以支持分子,遗传,基因组和数据分析,以支持疟疾分子监测和其他要求。该项目最终将支持政策变化,并为坦桑尼亚的疟疾控制和消除提供明智的决策。
•运营的功能集成和优化•人力资源管理•AI在员工监控和生产力评估中的道德意义。•使用AI的个性化培训和开发计划。•组织变更•AI在数字转型策略中的作用•创新过程•AI是产品和服务创新方面的共同创造者•使用AI加速创新管道。•投资流程•风险投资决策和资金分配的AI•使用AI驱动分析优化投资组合管理。•风险管理•AI检测和减轻运营和财务风险•可持续性•AI设计可持续的商业实践和模型。•AI在实现环境,社会和治理(ESG)目标中的作用•业务道德•伦理AI企业框架和管理和管理的伦理AI框架•就业影响和新工作•新工作•工作流离失所与创造:AI在劳动力市场中的双重作用
随着人工智能的快速发展,这项技术已经走出工业和实验室,进入了人们的日常生活。一旦人工智能和机器人代理进入日常家庭,它们就需要能够考虑人类的需求。借助诸如强化学习人类反馈 (RLHF) 之类的方法,代理可以通过学习奖励函数或直接基于其反馈优化策略来学习理想的行为。与受益于互联网规模数据的视觉模型和大型语言模型 (LLM) 不同,RLHF 受限于所提供的反馈量,因为它需要额外的人力投入。在本论文中,我们研究如何减少人类提供的反馈量,以减轻他们在估计奖励函数时的负担,同时又不降低估计值。我们从基于偏好的学习角度研究了反馈的信息量和效率之间的根本权衡。为此,我们介绍了多种方法,这些方法可以分为两类:隐式方法,无需额外的人力投入即可提高反馈质量;显式方法,旨在通过使用更多反馈类型来大幅增加信息量。为了隐式地提高偏好反馈的效率,我们研究如何利用主动学习 (AL),通过变分自编码器 (VAE) 从已学习表征的不同聚类中策略性地选取样本,从而提高样本的多样性。此外,我们利用偏好对之间的独特关系,通过在 VAE 的潜在空间上进行插值来执行数据合成。虽然隐式方法具有无需额外工作量的优势,但它们仍然存在偏好本身所能提供的信息量有限的问题。轨迹偏好的一个局限性是没有折扣,这意味着如果一条轨迹是偏好的,则假设整个轨迹都是偏好的,从而导致偶然的混淆。因此,我们引入了一种称为亮点的新反馈形式,让用户在轨迹上显示哪些部分是好的,哪些部分是坏的。此外,利用 LLM,我们创建了一种方法,让人类通过自然语言解释他们的偏好,以推断哪些部分是偏好的。总体而言,本论文摆脱了互联网规模数据的假设,并展示了如何通过较少的人工反馈实现一致性。
随着人工智能的快速发展,该技术已从工业和实验室环境中转移到了日常人的手中。一旦AI和机器人代理人被安置在日常家庭中,就需要考虑到人类的需求。使用诸如从人类反馈(RLHF)中学习的方法,代理可以通过学习奖励功能或直接基于其回馈来优化策略来学习理想的行为。与互联网规模数据受益的视觉模型和大型语言模型(LLM)不同,RLHF受到提供的反馈量的限制,因为它需要额外的人为努力。在本文中,我们研究了如何减少人类提供的反馈数量,以减轻奖励功能而不会降低估计值时减轻负担。我们从基于偏好的学习角度来解决反馈的信息和效率之间的基本权衡。在这方面,我们介绍了可以分为两组的多种方法,即在没有额外的人类努力的情况下提高反馈质量的隐式方法,以及旨在通过使用其他反馈类型来大幅增加信息内容的明确方法。为了暗中提高偏好反馈的效率,我们研究如何利用主动学习(AL)来通过从差异自动编码器(VAE)中从差异化表示中挑选出差异的群集来提高样品的多样性。此外,我们还利用了优先对对通过在VAE的潜在空间上插值执行数据综合之间的独特关系。虽然隐式方法具有不需要额外努力的好处,但它们仍然遭受单独提供的信息提供的有限信息。对轨迹的偏好的一个局限性是没有折扣,这意味着如果首选轨迹,则为整个轨迹是首选,导致休闲混乱。因此,我们引入了一种称为“亮点”的新形式的反馈形式,该反馈使用户可以在轨迹上显示,哪一部分是好的,哪一部分不好。此外,利用LLMS创建了一种让人通过自然语言解释其偏好的方法,以推断出哪些部分是首选的。总的来说,本论文远离了互联网规模数据的假设,并展示了我们如何从人类较少的反馈中实现一致性。
道路运输网络是世界上受伤和死亡的主要原因之一。与航空或铁路相比,道路运输的危险性更高,因为它持续依赖人类驾驶员以及经常发生不安全,复杂的情况场景。在过去的十年中,有一个重要的努力将车辆自动化引入道路运输以应对这些挑战。通过更换人类驾驶员,车辆自动化有可能彻底改变道路运输网络的安全性和效率。但是,在近年来,我们看到这种转变的进步速度较慢。我们将这种速度归因于车辆自动化的持续斗争,以处理出意外的处理问题的长尾巴,通常是由于遮挡,传感器不确定性甚至系统故障而引起的。解决意外的问题问题的一种方法是集成远程人类操作员,他们监视,协助以及在需要时控制车辆。尽管车辆自动化的关键目标是将人类带出 - 在循环中,但这些偏远的人类操作员构成了弹性层,有助于填补自动化差距,并减轻整个车辆操作中的故障。但是,通过集成远程人类运营商,我们冒着将新的人类错误引入道路运输网络的风险。在本文中,我们试图通过设计一个新的控制框架来应对这一挑战,该框架将远程人类操作员明确,安全地集成到了连接的车辆的工程和自动化中。我们的核心方式是密切检查远程人类操作员在监督连接车辆并将传统控制权调整为这些角色时扮演的角色。为此,我们详细介绍了一种结合形式方法和可及性分析以实现在线验证的新方法。我们表明,我们可以使用基于混合的逻辑树或基于汉密尔顿 - 雅各布(Hamilton-Jacobi)的可及性分析来协调一个称为时间逻辑树的计算结构,来验证操作员设计的规格。通过它们的模块化,时间逻辑树可确保当更改连接的车辆的规范时,可以实时更新验证结果。此外,我们表明,当使用汉密尔顿 - 雅各比(Hamilton-Jacobi)可达性分析构建时间逻辑树时,我们能够有效地合成符合特定符合特定的控制组的控制集,该控制集包含控制输入的控制输入,以确保其满足其要求。使用合成的控制集,我们设计了一个共享的自主系统,该系统允许远程操作可以在自动化不足的情况下安全地控制连接的车辆。通过利用这种方法,我们开发了一个框架,该框架允许远程人类操作员更改连接的车辆的驾驶规范,使车辆自动化以完成更新的规范,甚至在车辆的操作中进行干预,所有这些都可以保证车辆符合特定的特定方式。我们验证了使用5G蜂窝网络启用的小型连接的车辆测试台上开发框架的技术可行性和收益。
结果表明,可以针对各种生物构图方法(包括基于挤出的基于挤压和微型技术)进行多个链接方法,尽管需要进一步优化以提高生物学兼容性。基于硫醇-IT的点击化学方法提供了完善水凝胶特性的可能性,从而改善了生物学结果。使得成功组织复杂的结构,例如内皮和上皮管,这强调了各种组织工程应用的潜力。
深度神经网络(DNN)一直处于机器学习(ML)和深度学习(DL)(DL)的最新突破的最前沿。dnns越来越多地用于各种任务,从对卫星图像的地球观察和分析到医学诊断和智能聊天机器人。在这些进步方面的主要贡献是培训数据,计算资源和框架的丰富性,可以在范式中有效地培训越来越多,更复杂的DNN,该范式被称为分布式DL,尤其是分布式培训,这是该博士学位的重点。在分布式培训中,数据和计算分布在几个工人中,而不是单主培训,其中数据和计算都驻留在单个工人上。在这种设置中,分布式培训可以帮助克服单主训练的局限性,例如内存限制,计算瓶颈和数据可用性。但是,分布式培训带来了许多需要仔细解决的挑战,以便具有有效利用它的系统。这些挑战包括但不限于工人中计算和数据的有效分布,Straggler工人在集群中的统计(与其他工人相比,在计算步骤中大大落后于工人),尤其是在同步执行的工作,以及工人之间的交流和同步。这意味着系统应在计算和数据维度上提供可伸缩性。另一方面,从编程和可用性的角度来看,使用分布式培训范式通常需要了解分布式计算原理和具有分布式和数据密集型计算框架的经验以及对单霍斯特培训使用的代码进行重大更改。此外,随着训练A DNN涉及几个步骤和阶段(例如,数据准备,超参数调整,模型培训等。),希望可以重复使用彼此不同步骤的计算结果(例如,在高参数调谐试验中学习的权重,以便改善训练时间,以便在高参数调整试验中学习的权重)。最后,当开发更大,更复杂的DNN时,我们还需要了解每个设计选择的贡献。本博士学位论文的贡献解决了上述挑战,并共同优化了大规模的DNN培训,使其更易于访问,高效和计算可持续性,同时又可以在ML/DL工作流中延长冗余,并为进行消水研究提供了有用的工具。