本文介绍了在人机协作背景下代表,推理和交互式学习领域知识的综合体系结构。答案集Prolog是一种非单调逻辑推理范式,用于用不完整的comsense域知识来表示和理由,为任何给定目标计算计划并诊断出意外的观察。基于ASP的推理还用于指导以前未知的动作的互动学习以及编码负担能力,动作前提和效果的公理。此学习将主动探索,反应性动作执行和人类(口头)描述的输入观察以及学习的动作和公理用于后续推理。在模拟机器人上评估了架构,该机器人协助人类在室内域中。
此外,自 2019 年 3 月发布第一份自愿报告以来,英国一直鼓励和支持其他国家就其本国实施国际人道法的情况编写报告。为了实现这一目标,英国制作了一个工具包,为各国研究和起草自己的报告提供指导。它包括两个可选模板——用于简短和更详细的实施报告——以及如何发布报告的指导。该工具包可在 gov.uk 网站上在线访问,目前提供七种语言版本以及英语版本。1 我们已经做了这项工作,并将继续做这项工作,因为英国的立场是,自愿报告的发布有助于加强全球对国际人道法的实施和遵守,并有力地表明了一个国家遵守和实施国际人道法的承诺。我们希望这份更新版的自愿报告将鼓励其他国家公布其在国内实施国际人道法的活动细节,并使这些出版物保持最新,以更好地确定最佳做法,并最终改善对国际人道法的实施和遵守。
本文通过利用大型预训练模型来探讨合成数据的潜力,尤其是在面对分布变化时。al-尽管生成模型的最新进展已经阐明了跨分布数据发生的几项先前的作品,但它们需要模型调整和复杂的设置。为了绕过这些缺点,我们介绍了主要的g a a a a a a a a embeddings(doge),这是一个跨分布的插件语义数据augpection框架,几乎没有射击设置。我们的方法以潜在形式提取源和所需数据分布之间的差异,然后引导生成过程,以补充无数多种合成样本的训练集。我们的评估是在几个射击范式下进行亚种群偏移和三个领域适应方案进行的,表明我们的多功能方法改善了各个任务的性能,需要进行动手干预或复杂的调整。Doge铺平了毫不费力地生成遵循测试分布的现实,可转让的合成数据集的道路,从而加强了下游任务模型的现实世界效率。
摘要。朦胧的图像带来了一个具有挑战性的问题,由于信息丢失和颜色失真而遭受。当前的基于深度学习的去悬式方法通过增加网络深度来增强性能,但会导致大量参数开销。同时,标准卷积层集中在低频细节上,通常会说出高频信息,这阻碍了模糊图像中提出的先前信息的有效利用。在本文中,我们提出了TCL-NET,这是一个轻巧的飞行网络,该网络强调了频域特征。我们的网络首先包含一个用于提取高频和低频内形式的所谓层,该层是针对原始模糊图像的快速变压器专门设计的。同时,我们设计了一个频率域信息融合模块,该模块将高频和低频信息与后续卷积层的卷积网络作品集成在一起。此外,为了更好地利用原始图像的空间信息,我们引入了一个多角度注意模块。使用上述设计,我们的网络以仅0.48MB的总参数大小实现了出色的性能,与其他最先进的轻量级网络相比,参数的数量级降低了。
针对摄像机-LLM系统的域适应技术DOCAS AKINYELE,GODWIN OLAOYE日期:2024摘要:将来自相机的视觉数据与语言模型集成的视觉数据的摄像机模型(摄像头)对于各种应用至关重要,包括各种应用,包括实时图像字幕字幕,对象识别,对象识别,互动AI II系统。但是,这些系统通常由于域的变化而面临挑战 - 相机硬件的差异,环境条件和语言上下文变化。域适应技术通过使模型能够在培训和部署环境方面有效地跨不同领域执行,以解决此问题。本文探讨了与摄像机-LLM系统相关的关键领域适应技术。它涵盖了数据增强,功能一致性,对抗性训练,转移学习和生成模型。此外,它研究了这些技术如何减轻相机数据中变异性的影响并改善视觉输入和语言生成之间的交叉形态对齐。本文还讨论了诸如实时字幕,对象检测和AR/VR等应用程序,以及评估适应性绩效的评估指标。未来的方向指向多域适应性,自适应学习技术和人类在循环系统中。这些进步有望为真实应用程序提供更健壮和广义的摄像头系统。简介摄像机模型(摄像机-LLM)系统代表了视觉感知和自然语言理解的集成方面的重大进步。通过将通过相机捕获的图像数据与复杂的语言模型相结合,这些系统可实现一系列应用程序,从实时图像字幕和对象检测到交互式AI和增强现实体验。随着人工智能的能力继续增长,可以在各种环境中无缝运行的强大摄像头系统的需求变得越来越重要。
深度神经网络的最新进展成功地改善了各种学习问题[40,8,26,19,20]。但是,对于监督学习,大量的训练数据仍然是学习准确的深层模型的关键。尽管可能可用于一些预先规定的域,例如ImageNet [7],但对于每个临时目标域或任务而言,手动标签通常很难或昂贵。缺少IN-ININAIN标记的数据阻碍了在许多实际问题中拟合模型的应用。在没有来自目标域的标记数据的情况下,已经出现了无监督的域适应(UDA)方法,以减轻数据分布的域移动[2,1,1,5,37,30,18,3,3,17]。它与无监督的学习有关,因为它仅需要从源域和目标域的零标签手动标签。在最近关于UDA的工作,这是Long等人提出的开创性工作。[22,25]旨在最大程度地减少深神经网络中源和目标域之间的差异,在此,在该网络中,域差异通过最大值
图 1. (a) 单层 (1L) MoSe 2 和 ReS 2 晶体结构。上图显示晶体结构的侧视图,下图显示晶体结构的顶视图。侧视图显示了这些层状材料上偶极子平面内取向的示意图。(b) 样品 1 (S1) 的 ReS 2 -MoSe 2 异质结构的光学图像。插图是样品侧视图的示意图。(c) MoSe 2 、ReS 2 和 HS 区域的拉曼光谱。HS 拉曼光谱由来自各个 1L 区域的不同振动模式组成。(d) 在透明蓝宝石基板上制作的类似异质结构的三个不同区域的吸收光谱数据(样品 2,S2)。MoSe 2 A 和 B 激子峰清晰可见,ReS 2 较低能量吸收峰用箭头标记。HS 光谱由两个 1L 区域的峰组成。
皮肤癌检测是临床决策支持的一个常见应用 [7]。由于皮肤癌患者数量的增加和早期检测的良好治疗效果,过去几年来,人们在该领域进行了大量研究。在此背景下,DNN 已成为开发皮肤图像分类模型的可行方法 [2、8、12、30]。社区的高度关注导致出现了各种不同方法,其性能水平也参差不齐。1 所有方法的共同点都是训练一个可用于诊断并从而用于临床决策支持的模型。因此,新方法的评估标准通常是它们是否能够使模型在各种皮肤病诊断任务中取得更好的性能结果 [21]。同时,其他 AI 研究领域也越来越多地考虑对模型预测的解释。相比之下,这些技术在皮肤图像分类中的应用几乎没有得到解决,尽管最近的一些研究已经认识到