•欧洲的“政策组合”允许货币政策以及国家和中央财政政策的收敛扩张,以应对大流行冲击的挑战。政府干预采取了财政转让,公共保证和公共购买的形式。财政政策制定者大大增加了其国债。欧盟(EU)首次通过下一代欧盟计划实施集中的财政政策响应。同时,欧洲中央银行(ECB)在很大程度上加强了其货币政策已经扩张的立场,以向银行业提供丰富的流动性,并支持实施扩张的国家财政政策。
其在光伏应用领域的研究引起了人们的兴趣,因为它们的量子效率已经达到了 25.5% [1],而且还扩展到辐射传感 [2,3] 和各种光电设备。[4–7] 达到高质量 MAPbI 3 、FAPbI 3 和 CsPbI 3 单晶的极限,与 MA、FA 和铯 (Cs) 阳离子混合物的组合结构成为最先进的钙钛矿材料,提高了量子效率并将结构稳定性从几天延长到几个月。[2,8–10] 由于基本物理性质接近其母结构,因此所提出的 FA 0.9 Cs 0.1 PbI 2.8 Br 0.2 可作为铅卤化物钙钛矿类的有效模型系统。与传统的 III-V 和 II-VI 半导体相比,钙钛矿在某种意义上具有反转的能带结构:价带 (VB) 态由 s 轨道形成,而导带 (CB) 态由 p 轨道贡献。强自旋轨道耦合,特别是 Rashba 效应 [11–14] 也会交换电子和空穴的自旋特性。[15,16] 因此,与晶格核的超精细相互作用由空穴而不是电子主导。钙钛矿能带结构为光学跃迁提供了清晰的极化选择规则,因此结合
摘要。朦胧的图像带来了一个具有挑战性的问题,由于信息丢失和颜色失真而遭受。当前的基于深度学习的去悬式方法通过增加网络深度来增强性能,但会导致大量参数开销。同时,标准卷积层集中在低频细节上,通常会说出高频信息,这阻碍了模糊图像中提出的先前信息的有效利用。在本文中,我们提出了TCL-NET,这是一个轻巧的飞行网络,该网络强调了频域特征。我们的网络首先包含一个用于提取高频和低频内形式的所谓层,该层是针对原始模糊图像的快速变压器专门设计的。同时,我们设计了一个频率域信息融合模块,该模块将高频和低频信息与后续卷积层的卷积网络作品集成在一起。此外,为了更好地利用原始图像的空间信息,我们引入了一个多角度注意模块。使用上述设计,我们的网络以仅0.48MB的总参数大小实现了出色的性能,与其他最先进的轻量级网络相比,参数的数量级降低了。
在全球气候变化带来的挑战下增加粮食生产,从头驯化的概念(利用耐心的野生物种作为新作物)最近引起了人们的关注。我们以前曾在豆类维格纳氏菌(Minni payaru)的诱变人群中鉴定出具有所需的驯化性状的突变体,为新命运的试点。鉴于有多种耐心的野生豆类物种,使用反向遗传学建立有效的驯化过程很重要,并确定负责驯化性状的基因。在这项研究中,我们使用Vigna stipulacea ISI2突变体将VSPSAT1识别为负责降低硬种子的候选基因,该基因从镜头凹槽中吸收水。扫描电子显微镜和计算机断层扫描显示,ISI2突变体的蜂窝状蜡密封镜头凹槽比野生型较小,并且从透镜凹槽中取水。我们还鉴定了ISI2突变体的多效性效应:加速叶片衰老,种子大小的增加和每个豆荚的种子数量减少。在这样做的同时,我们在11个染色体和30,963个注释的蛋白质编码序列中生产了441 MBP的二木杆菌全基因组组件。这项研究强调了野生豆类的重要性,尤其是维格尼亚属的豆类,对生物和非生物胁迫的耐受性对于气候变化期间的全球粮食安全。
本文介绍了在人机协作背景下代表,推理和交互式学习领域知识的综合体系结构。答案集Prolog是一种非单调逻辑推理范式,用于用不完整的comsense域知识来表示和理由,为任何给定目标计算计划并诊断出意外的观察。基于ASP的推理还用于指导以前未知的动作的互动学习以及编码负担能力,动作前提和效果的公理。此学习将主动探索,反应性动作执行和人类(口头)描述的输入观察以及学习的动作和公理用于后续推理。在模拟机器人上评估了架构,该机器人协助人类在室内域中。
本文通过利用大型预训练模型来探讨合成数据的潜力,尤其是在面对分布变化时。al-尽管生成模型的最新进展已经阐明了跨分布数据发生的几项先前的作品,但它们需要模型调整和复杂的设置。为了绕过这些缺点,我们介绍了主要的g a a a a a a a a embeddings(doge),这是一个跨分布的插件语义数据augpection框架,几乎没有射击设置。我们的方法以潜在形式提取源和所需数据分布之间的差异,然后引导生成过程,以补充无数多种合成样本的训练集。我们的评估是在几个射击范式下进行亚种群偏移和三个领域适应方案进行的,表明我们的多功能方法改善了各个任务的性能,需要进行动手干预或复杂的调整。Doge铺平了毫不费力地生成遵循测试分布的现实,可转让的合成数据集的道路,从而加强了下游任务模型的现实世界效率。
学生................................................................................................................................................. 57
深度神经网络的最新进展成功地改善了各种学习问题[40,8,26,19,20]。但是,对于监督学习,大量的训练数据仍然是学习准确的深层模型的关键。尽管可能可用于一些预先规定的域,例如ImageNet [7],但对于每个临时目标域或任务而言,手动标签通常很难或昂贵。缺少IN-ININAIN标记的数据阻碍了在许多实际问题中拟合模型的应用。在没有来自目标域的标记数据的情况下,已经出现了无监督的域适应(UDA)方法,以减轻数据分布的域移动[2,1,1,5,37,30,18,3,3,17]。它与无监督的学习有关,因为它仅需要从源域和目标域的零标签手动标签。在最近关于UDA的工作,这是Long等人提出的开创性工作。[22,25]旨在最大程度地减少深神经网络中源和目标域之间的差异,在此,在该网络中,域差异通过最大值
