胎儿心脏视图的解剖结构检测对于诊断胎儿先天性心脏病至关重要。实际上,不同的Hos-Pitals数据之间存在较大的域间隙,例如由于采集设备的不同而引起的可变数据质量。此外,产科专家提供的准确的符号信息非常昂贵甚至无法使用。本研究探讨了无监督的域自适应胎儿心脏结构检测问题。现有的无监督域自适应观察检测(UDAOD)的方法主要集中在自然场景中的特定物体,例如雾gy的城市景观中,自然场景的结构关系是不确定的。Unlike all previous UDAOD scenarios, we first collected a F etal C ardiac S tructure dataset from two hos- pital centers, called FCS , and proposed a multi-matching UDA approach ( M 3 -UDA ), including H istogram M atching (HM), S ub-structure M atching (SM), and G lobal-structure M atching (GM), to better transfer the在医疗场景中进行UDA检测的解剖结构的拓扑知识。HM减轻由像素转换引起的源和目标之间的域间隙。sm融合了子结构的不同角度信息,以遵循局部拓扑知识,以弥合内部子结构的主要间隙。GM旨在使整个器官的全球拓扑知识与目标域相结合。对我们收集的FCS和Cardiacuda进行了广泛的实验,实验结果表明,M 3 -UDA的表现胜过现有的UDAOD研究。数据集和源代码可在https://github.com/xmed-lab/m3-uda
Applications : SOLIDWORKS, Simulink, LabVIEW, Microsoft Office, Creo, NX, ANSYS, Confluence, Unity Programming : Python, C++, MatLab, HTML, Java, ROS, Machine Learning, Image Processing, Embedded Firmware Manufacturing : Sheet Metal Design, CNC, Composite Materials, DFM, Soldering, PCB Design, Rapid Prototyping Professional Experience Planet Labs -系统工程实习生 - 2023年6月 - 2023年6月,加利福尼亚州旧金山•在我们的下一代航天器上开发了任务重要资格测试的测试程序。•模拟了航天器原型的一天中的一天,涵盖了所有子系统以进行需求验证。基本机器人技术 - 机械工程师 - 加利福尼亚州帕萨迪纳,2020年1月 - 2022年8月•使用神经网络推理加速器开发了下一代感知硬件。•开发了用于基于Docker的容器的机器人操作系统的外围驱动程序。•集成的神经网络将优化的边缘计算机纳入生产硬件解决方案。•向消费者,工业和食品安全的制造环境部署和集成的自定义检查硬件。Morse Corp-工程合作社 - 马萨诸塞州剑桥市2019年1月 - 2019年8月•为无人机设计的结构组件及其在Solidworks中的飞行测试设备。•开发了固件,以控制飞行测试设备上释放机制的精确时机。•使硬件测试方法更可靠,并且与自动测试和冗余安全系统一致。•与系统工程团队合作就与美国陆军的主要开发合同提案。努力机器人 - 系统工程合作社 - 马萨诸塞州切尔姆斯福德,2018年1月 - 2018年6月•对机器人性能进行了移动性,耐力,通信和附属互操作性的验证。•设计了一种定制测试工具,以使用基于Python的软件来测量和记录机器人地面速度。HASBRO Inc.-工程合作社,Integrated Play -Pawtucket,RI,2017年1月至2017年6月•使用高级技术,诸如语音交互之类的高级技术,为动画,连接的玩具设计了新的游戏体验。•使用Unity和Google Cardboard Android应用程序原型的新型游戏VR互动概念。•使用加工和3D打印零件创建了用于未来动画玩具的机制模拟。工程活动结构和复合材料实验室 - 研究生研究员2023-2024•研究物理知情的神经网络,用于建模飞行中机翼的空气动力学和结构响应。•开发和训练神经网络,使用Pytorch和Nvidia模量框架预测复杂的3D流。Avatar Xprize Arm Capstone Project 2019秋季•在由5名学生组成的团队中,设计和原型拟建了拟人化机器人手臂和触觉外骨骼控制器。•开发了一个带有精确扭矩控制的准直接驱动应用程序的紧凑型无刷发动机驱动程序。•编写了电动机控制器固件,包括面向现场的控制,RS485上的串行通信以及实施
世界贸易组织危机的主要贡献者是美国对多边主义的支持下降。该组织设计的三个关键问题导致了下降。首先,与贸易补救措施相关的不完整规则是由组织的上诉机构解释的,与一组狭窄的美国国内优先事项相抵触。第二,现有的组织规则不能充分说明非市场经济体,例如中国。第三,由于世界贸易组织中基于共识的决策,对这些问题的补救是不可行的。这些问题代表了增加的经济融合引起的更根本的挑战 - 主权和民主侵蚀的损害。为了减轻多边协议中的这些问题,我们建议:(1)一个狭窄的解决方案,该解决方案是为处理贸易补救纠纷的特殊过程; (2)一种广泛的解决方案,可以放松对组织改革的共识要求,采用某种形式的超级敬意投票或日落条款; (3)美国境内的国内共识建设机构的改革直接解决了选民不满的政治经济来源。
皮肤癌检测是临床决策支持的一个常见应用 [7]。由于皮肤癌患者数量的增加和早期检测的良好治疗效果,过去几年来,人们在该领域进行了大量研究。在此背景下,DNN 已成为开发皮肤图像分类模型的可行方法 [2、8、12、30]。社区的高度关注导致出现了各种不同方法,其性能水平也参差不齐。1 所有方法的共同点都是训练一个可用于诊断并从而用于临床决策支持的模型。因此,新方法的评估标准通常是它们是否能够使模型在各种皮肤病诊断任务中取得更好的性能结果 [21]。同时,其他 AI 研究领域也越来越多地考虑对模型预测的解释。相比之下,这些技术在皮肤图像分类中的应用几乎没有得到解决,尽管最近的一些研究已经认识到
其在光伏应用领域的研究引起了人们的兴趣,因为它们的量子效率已经达到了 25.5% [1],而且还扩展到辐射传感 [2,3] 和各种光电设备。[4–7] 达到高质量 MAPbI 3 、FAPbI 3 和 CsPbI 3 单晶的极限,与 MA、FA 和铯 (Cs) 阳离子混合物的组合结构成为最先进的钙钛矿材料,提高了量子效率并将结构稳定性从几天延长到几个月。[2,8–10] 由于基本物理性质接近其母结构,因此所提出的 FA 0.9 Cs 0.1 PbI 2.8 Br 0.2 可作为铅卤化物钙钛矿类的有效模型系统。与传统的 III-V 和 II-VI 半导体相比,钙钛矿在某种意义上具有反转的能带结构:价带 (VB) 态由 s 轨道形成,而导带 (CB) 态由 p 轨道贡献。强自旋轨道耦合,特别是 Rashba 效应 [11–14] 也会交换电子和空穴的自旋特性。[15,16] 因此,与晶格核的超精细相互作用由空穴而不是电子主导。钙钛矿能带结构为光学跃迁提供了清晰的极化选择规则,因此结合
学生................................................................................................................................................. 57
摘要。朦胧的图像带来了一个具有挑战性的问题,由于信息丢失和颜色失真而遭受。当前的基于深度学习的去悬式方法通过增加网络深度来增强性能,但会导致大量参数开销。同时,标准卷积层集中在低频细节上,通常会说出高频信息,这阻碍了模糊图像中提出的先前信息的有效利用。在本文中,我们提出了TCL-NET,这是一个轻巧的飞行网络,该网络强调了频域特征。我们的网络首先包含一个用于提取高频和低频内形式的所谓层,该层是针对原始模糊图像的快速变压器专门设计的。同时,我们设计了一个频率域信息融合模块,该模块将高频和低频信息与后续卷积层的卷积网络作品集成在一起。此外,为了更好地利用原始图像的空间信息,我们引入了一个多角度注意模块。使用上述设计,我们的网络以仅0.48MB的总参数大小实现了出色的性能,与其他最先进的轻量级网络相比,参数的数量级降低了。
颅骨插曲是重要的第一步。基于学习的细分模型(例如U-NET模型)在自动执行此细分任务时显示出令人鼓舞的结果。但是,当涉及到新生儿MRI数据时,在培训这些模型期间,没有任何可公开可用的大脑MRI数据集随着手动注释的segmentment口罩而被用作标签。大脑MR图像的手动分割是耗时,劳动力密集的,需要专业知识。此外,由于成人数据和新生儿数据之间的较大域移动,使用对成人脑MR图像进行训练的分割模型进行分割新生脑图像无效。因此,需要对新生儿大脑MRI的更有效,准确的颅骨剥离方法。在本文中,我们提出了一种无监督的方法,以适应经过成人MRI训练的U-NET颅骨剥离模型,以有效地在新生儿上工作。我们的资产证明了我们新颖的未加剧方法在提高分割准确性方面的有效性。我们提出的方法达到了总体骰子系数为0。916±0。032(平均值±STD),我们的消融研究巩固了我们提议的有效性。非常重要的是,我们的模型的性能与我们进行了综合的当前最新监督模型非常接近。所有代码均可在以下网址提供:https://github.com/abbasomidi77/daunet。这些发现表明,这种方法是一种有价值,更容易,更快的工具,用于支持医疗保健专业人员,以检查新生大脑的先生。
联合学习允许分布式的医疗机构可以协作学习具有隐私保护的共享预测模型。在临床部署时,接受联邦学习的模型仍会在联邦外面完全看不见的霍斯群岛上使用时仍会遭受性能下降。在本文中,我们指出并解决了联合域的生成(FedDG)的新型问题设置,该设置旨在从多个分布式源域中学习联合模型,以便它可以直接概括为看不见的目标域。我们提出了一种新颖的方法,在持续频率空间(ELCF)中称为情节学习,通过启动每个客户端在数据分散率的挑战性约束下利用多源数据分布来利用多源数据分布。我们的方法通过有效的连续频率空间插值机制以隐私保护方式传输客户之间的分布信息。通过转移的多源分布,我们进一步仔细设计了面向边界的情节学习范式,以将本地学习暴露于域分布变化,尤其是在医学图像分割场景中尤其满足模型概括的挑战。在两个医学图像分割任务上,我们的方法的有效性优于最先进的表现和深入消融实验。可以在https://github.com/liuquande/feddg-elcfs上使用代码。
