混合的2D/3D钙钛矿材料对光伏和发光二极管(LED)群落特别感兴趣,因为与常规3D Perovskite吸收者相比,它们令人印象深刻的光电电特性以及改善的水分稳定性。在这里,研究了一种混合铅锡钙钛矿,其中含有3D结构或高度相岩石ruddlesden – Popper 2D结构的独特的自组装结构域。用超快的瞬态吸收测量值揭示了材料的复杂能量景观。表明,这些显微镜结构域之间的电荷转移仅发生在纳秒时尺度上,这与域的大尺寸一致。使用光泵 - terahertz探针光谱法,有效的电荷载体迁移率被证明是类似的纯2D和3D perovskites之间的中介。此外,提出了对自由载体重组动力学的详细分析。通过在光激发载体种群的完整动态模型中结合一系列激发波长的结果,可以表明,纤维中的2D域与3D域具有非常相似的载波动力学,这表明不应由材料的异型结构构成远距离电荷传输。
混合的2D/3D钙钛矿材料对光伏和发光二极管(LED)群落特别感兴趣,因为与常规3D Perovskite吸收者相比,它们令人印象深刻的光电电特性以及改善的水分稳定性。在这里,研究了一种混合铅锡钙钛矿,其中含有3D结构或高度相岩石ruddlesden – Popper 2D结构的独特的自组装结构域。用超快的瞬态吸收测量值揭示了材料的复杂能量景观。表明,这些显微镜结构域之间的电荷转移仅发生在纳秒时尺度上,这与域的大尺寸一致。使用光泵 - terahertz探针光谱法,有效的电荷载体迁移率被证明是类似的纯2D和3D perovskites之间的中介。此外,提出了对自由载体重组动力学的详细分析。通过在光激发载体种群的完整动态模型中结合一系列激发波长的结果,可以表明,纤维中的2D域与3D域具有非常相似的载波动力学,这表明不应由材料的异型结构构成远距离电荷传输。
统计关系学习和AI(starai)[11,32],另一方面,在存在不同的对象和关系的数量(即在关系领域)的存在。但是,关系RL [8]相对尚未探索,尽管存在某些方法[42],但它们并不能按照大型任务进行扩展,并且对于多基因设置而言肯定不容易扩展。一个有希望的方向正在利用层次(和关系)计划的组合,以探索多个级别的抽象和RL来学习低级政策[16,20]。受到AI的这些不同子区域的成功的启发,我们采用了一种方法,该方法利用了关系层次规划师的力量作为噪音,关系领域中多种学习的集中式控制器。我们所提出的方法称为多基金关系计划和强化学习(MarePrel),将计划分解,集中控制和代理位置,用于构建特定任务表示的Starai,以及通过这些专业表示的有效和有效学习的深度RL。我们做出以下关键贡献:(1)据我们所知,我们提出了可以跨越多个对象和关系概括的关系构造域的第一个多基因系统。正如我们在相关工作中所显示的那样,多种文献中存在着重要的文献,关系学习以及计划和学习的整合。我们的工作是在多构想系统中将所有这些方向相结合的第一项工作。(2)为了实现这一目标,我们开发了MarePrel,这是一种综合计划和学习体系结构,能够在关系领域的不确定性下进行多种学习。具体而言,玛丽·玛丽(Mareprel)的有效学习和推理能力源于其关系形式的代表,高级计划的分解以及最低级别的深度RL的使用。(3)最后,我们在一些关系多基因领域中证明了我们的AP级的有效性和概括能力。我们将基于不同基于RL的多构基线(包括明确使用子任务信息)进行比较,并说明了我们方法的优越性。本文的其余部分如下:在审查了相关工作并介绍了必要的背景之后,我们概述了我们的多基因框架,并更详细地讨论算法。然后,我们通过讨论未来研究的领域在结束论文之前对一些关系的多种关系领域进行了实验评估。
推理引擎推理引擎是专家系统的关键组成部分,采用逻辑规则来得出信息或基于知识库做出决策。它将fuzzi输入(通过模糊过程获得)映射到规则库,从而为应用电缆规则生成模糊输出。模糊推理引擎遵循一个结构过程,其中包括多个关键步骤。最初,它通过从知识库中识别相关规则并将输入数据与每个规则中指定的条件进行比较来执行规则匹配。一旦确定了相关规则,发动机就会评估每个规则的真实程度,从而确定输入SATIS符合条件的程度。随后,它通过结合其输出以产生连贯的决策或结论来汇总从匹配规则得出的结论。此过程是迭代的,引擎不断应用规则并更新知识库,直到实现解决方案或不适用其他规则为止。此系统ATIC方法使模糊推理引擎可以处理
生物医学知识图(BKG)已成为组织和利用整个生物医学领域发现的庞大而复杂的数据的强大工具。然而,当前对BKG的评论通常将其范围限制在特定的领域或方法上,从而忽略了更广泛的景观和快速的技术进步来重塑它。在本调查中,我们通过从三个核心角度提供对BKG的系统审查来解决这一差距:域,任务和应用程序。我们首先研究了如何从不同的数据源构建的BKG,包括分子相互作用,药理数据集和临床记录。接下来,我们讨论BKGS启用的基本任务,重点是知识管理,检索,推理和解释。最后,我们重点介绍了精确医学,药物发现和科学研究中的现实世界应用,这说明了BKG在多个领域的翻译影响。通过将这些观点综合为一个统一的框架,这项调查不仅阐明了BKG研究的当前状态,而且为将来的探索建立了基础,从而实现了创新的方法论进步和实践实现。
视觉提问(VQA)是用户体验的关键,尤其是在改善视觉语言模型(VLMS)的概括能力之后。但在实际设置中使用标准化框架评估应用程序要求的VLM仍然具有挑战性。本文旨在使用端到端框架解决该问题。我们提出VQA360 - 一种源自估计的VQA基准测试的新型数据集,该数据集用任务类型,应用程序域和知识类型注释,以进行全面评估。我们还引入了Goeval,这是一种使用GPT-4O开发的多模式评估度量,与Human判断相关系数为56.71%。我们使用状态VLMS的实验表明,没有任何单个模型都普遍擅长,因此,将正确的选择成为关键的设计决策。专有模型(例如Gemini-1.5-Pro和GPT-4O-Mini)通常优于其他模型,但是诸如InternVL-2-8B和COGVLM-2-LALAMA-3-19B之类的开源模型也表现出竞争优势,同时提供了其他优势。我们的框架工作也可以扩展到其他任务1。
例如在人脸上训练的模型,以分类对象是否戴着眼镜,可以在猫的图像上产生相同的输出。我们希望调查结果是一组人的面孔,而不是猫的脸。
使用高斯工艺(GP)和Matérn和径向基函数(RBF)协方差函数的贝叶斯优化通常用于优化黑盒功能。Matérn和RBF内核没有对函数域的任何假设,这可能会限制其在有限域中的适用性。为了解决限制问题,我们引入了一个非平稳β单元Hyper-Cube(BUC)内核,该内核是由Beta分布密度函数的产物诱导的,并允许在有界域上建模功能。为了提供理论见解,我们在使用BUC内核的GP上限置信度(GP-UCB)算法时提供了信息增益和累积后悔界限的分析。我们的实验表明,在不同问题中,BUC内核始终优于众所周知的Matérn和RBF内核,包括合成功能优化以及视觉和语言模型的压缩。
鉴于手动策展的资源密集型性质,评估集中选定项目的多样性很重要。量化训练集中的噪声后,以输入摘要的文本和预期的输出标签之间的差异形式,我们相应地探讨了不同的策略。将任务作为端到端的关系提取,我们评估了标准辅导(BioGPT,GPT-2和SEQ2REL)的性能,并使用开放的大语言模型(LLMS)(LLAMA 7B-65B)进行了少量学习。除了在几次射击设置中进行评估外,我们还探讨了开放LLM作为合成数据的潜力,并为此目的提出了新的工作流程。所有评估的模型在合成摘要而不是原始嘈杂数据时进行了实质性改进。我们提供表现最好的表现(F1得分= 59。0)天然产品关系端到端的MioGPT-LARGE模型以及所有培训和评估数据集。请访问https://github.com/idiap/abroad-re。