OHB Italia 设计、制造并认证了一种用于太空望远镜的新型盖门组装机制 (CDAM)。CDAM 的主要目的是保护仪器免受阳光照射。此外,它可以限制 AIT 和存储阶段的灰尘颗粒污染。该系统由四个主要子组件组成:压紧和释放机制 (HDRM)、致动系统、盖门和应急系统。HDRM 基于三个分离螺母致动器,需要预加载锥形可分离 I/F 上的球体。另一方面,致动系统配备了带有冗余绕组的步进齿轮马达。齿轮马达将直径为 1 米的盖门旋转 270 度。如果齿轮马达发生故障,应急系统会将致动器与盖门分离。同时,该系统会强制打开盖门。它基于高输出石蜡致动器 (HOPA)。当 HOPA 启动时,它会脱离齿轮马达并接合预载扭力弹簧。弹簧对盖门施加扭矩,使其永久打开。在此阶段,扭矩应用由擒纵机构控制。本文介绍了 CDAM 设计以及环境测试活动的结果。特别关注了在机制集成和测试过程中获得的经验教训。简介
在安全和便利性至关重要的时代,将技术集成到日常物品的时代变得越来越普遍。这样的创新是消息警报门锁系统,利用Ardiuno微控制器的多功能性提供了物理安全和实时通知。该系统提供了传统的门锁机制与现代通信协议的无缝混合,使用户能够远程监视和控制对其房屋的访问。在其核心中,消息警报门锁系统围绕着Arduino Microcontroller,围绕Arduino MicroController,该平台享有多功能平台,其灵活性和在电子项目中的使用而享有。再加上各种传感器,执行器和通信模块,Ardiuno充当操作的大脑,策划了物理组件与数字接口之间的相互作用。该系统的基本原理在于其检测和响应环境变化的能力。传感器,例如磁性芦苇开关或接近传感器,用于监视门的状态,检测打开或关闭的实例。在检测相关事件后,Arduino触发了锁定机制,确保了房屋的安全性。但是,创新并不止于此。设置该系统与众不同的是其通过GSM模块或Internet连接促进的消息传递功能的集成。除了确保门外,Arduino还编程为向指定接收者发送实时通知,从而提醒他们在门口检测到的任何活动。无论是简单的SMS消息还是智能手机应用程序上的通知,用户仍然有能力采取适当的措施,无论其物理上的距离如何。
摘要。膨胀型阻燃粘合剂 (IFRB) 为近年来各种被动防火系统最有效的利用提供了巨大的进步。本文重点介绍了使用本生灯和热重分析的 IFRB 的耐火性和热性能。将五种 IFRB 配方与蛭石和珍珠岩混合,制造防火木门原型。此外,在 2 小时的防火测试下对防火门原型进行了比较。密度低至 637 kg/m3 的原型 (P2) 表现出极高的耐火等级性能,与原型 (P1) 相比,温度降低了 58.9 °C。值得注意的是,一种添加了配方膨胀型粘合剂的创新型防火木门原型已被证实可有效阻止火灾并保持其完整性,耐火期长达 2 小时。
作者:JJ McGinnis · 2022 — 接受所主张的索赔、辩护或其他立场。6.尽管律师费裁决在上诉中被部分推翻,但希尔别无选择,只能接受……
传统的烧结技术需要很长的加工时间——炉子需要几个小时才能加热,然后再花几个小时来“烘烤”陶瓷材料——这在固态电池电解质的开发中尤其成问题。替代烧结技术(如微波辅助烧结、放电等离子烧结和闪光烧结)因各种原因而受到限制,通常是因为它们是特定于材料的和/或昂贵的。
1 Jean Baechler,《资本主义》,巴黎,伽利玛,1995 年,889 页;费尔南·布罗代尔 (Fernand Braudel),《物质文明、经济与资本主义》,《Xve-Xviiie Siècle》,巴黎,Armand Colin,1979 年,三卷;埃里克·霍布斯鲍姆 (Eric Hobsbawm),《资本时代》,伦敦,Vintage Books,1975 年,354 页;肯尼思·彭慕兰 (Kenneth Pomeranz),《中国北方内陆国家、社会和经济的形成,1853-1937》,伯克利,加州大学出版社,1993 年,第 336 页。 2 乔纳森·泽特林 (Jonathan Zeitlin),“Les voies multiples de l'induscialization”,《社会运动》,第 133 期,1985 年;道格拉斯·C·诺斯和 RP·托马斯,《西方世界的崛起》,剑桥,剑桥大学出版社,1973 年;阿尔伯特·O·赫希曼,1967 年,《发展项目观察》,华盛顿特区,布鲁金斯学会,第 197 页。
o 地点:俄亥俄州雷蒙德 o 建筑面积:+160 万平方英尺英尺 o 员工数量:1,600+ o 在当前建筑中开始运营:1993 年 o 在俄亥俄州开始运营:1984 年 o HRA 在加利福尼亚州成立:1975 年
DAP® DYNAFLEX ULTRA™ 高级密封胶适用于窗户、门、壁板和装饰应用,采用创新的 WeatherMax™ 技术配制而成,可抵抗紫外线褪色、变黄、粉化、碎裂、开裂和污垢堆积。它还具有终身防霉、防霉和防藻保修,因此密封胶看起来干净如新。DYNAFLEX ULTRA™ 对常见建筑材料具有很强的附着力,并且保持柔韧性,可形成持久的防风雨密封,提供全天候保护并抵御恶劣天气。它可在雨天使用,只需一小时即可上漆,以提高生产率。不会起泡。密封胶可轻松喷出,工具使用顺畅,易于涂抹。气味低,易于用水清理。可用于室外/室内。符合 ASTM C920、S 型、NS、25 级标准。
图 1:光聚合物分层系统 (Wikipedia.org)。.............................................................. 2 图 2:使用相交激光束的光雕塑过程 (Swainson, 1977)。......... 3 图 3:塔式喷嘴固体自由成型技术 (drajput.com).................................... 4 图 4:简单的分层铸造模具 (DiMatteo, 1976)。.............................................................. 4 图 5:粉末选择性激光烧结工艺 (Wikipedia.org)。................................................ 5 图 6:FDM 工艺图 (Reprap.org)。.................................................................... 7 图 7:DFA 分析软件用户界面 (Boothroyd et al, 2011)。.................................... 11 图 8:MakerBot 的 MakerWare 用户界面。(Makerbot.com) .................................... 14 图 9:简化的挤压系统,说明轴位置 (Wikipedia.org)。........... 20 图 10:GE Aviation 的增材制造燃油喷嘴 (Rockstroh 等人,2013)。......... 21 图 11:通过 DMLS (EADS) 优化和制造的两个航空航天支架。....... 23 图 12:"Over-the-wall" 设计方法的说明 (Munro & Associates,1989)。...... 24 图 13:成本与影响图“谁投下的阴影最大?” (Munro & Associates,1989)。...................................................................................................................................... 24 图 14:显示不同材料和制造方法之间兼容性的图表(Boothroyd & Dewhurst,2011)............................................................................................. 26 图 15:alpha 和 beta 旋转对称值(Boothroyd et al,2011)。................... 28 图 16:影响零件处理的几何(左)和其他(右)特征(Boothroyd et al,2011)。...................................................................................................................................... 28 图 17:提高组装便利性的示例(Boothroyd et al,2011)。................................ 28 图 18:影响插入时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999)。...................................................................................................................... 30 图 19:影响手动处理时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999)。................................................................................................ 31 图 20:原始控制器组件(Boothroyd 等人,2011 年)。...................................................... 32 图 21:分析前(左)和分析后(右)的控制器组件(Boothroyd 等人,2011 年)。........................................................................................................................................... 34 图 22:当前门铰链的组件。........................................................................................................... 35 图 23:两个已安装铰链的 CATIA 模型和负载分析方向(湾流宇航)。.................................................................................................................................... 36 图 24:弹簧球和铰链止动器的特写............................................................................. 37 图 25:重新设计的用于增材制造的门铰链。.................................................... 39 图 26:鹅颈加固前后的视觉对比。........... 41 图 27:重新设计前后球柱塞壳体的视觉对比。........... 41 图 28:原始铰链组件上用于插入计算的投影槽。......... 43 图 29:重新设计的铰链组件上用于插入计算的投影槽。.... 43