•直径面积:a =π×(d/2)2 =π/4×d 2 = 0.785×d 2 2•fvi(流速速度积分):跟踪多普勒光谱(单位:v×t→m/s = m) CI = CO/BSA
与年龄相关的认知下降的生理机制尚不清楚,这在很大程度上是由于缺乏纵向研究。现有的纵向研究着重于大脑的总体神经解剖学和扩散特性。我们在此提供了对动脉搏动性变化的纵向分析 - 动脉僵硬的代理 - 在两个主要的大脑中部和椎骨中。我们发现,在相对较短的时间内,一些参与者的脉冲性增加,这些增加与海马收缩有关。在随访时的流体智能测试中,较高的基线脉动与较低的分数有关。这是脑动脉僵硬随时间的增加与区域收缩之间的关联的第一个纵向证据。©2021作者。由Elsevier Inc.出版这是CC BY-NC-ND许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章
参考。 B212058en-C©Vaisala 2022该材料受版权保护,所有版权都由Vaisala及其个人合作伙伴保留。 保留所有权利。 任何徽标和/或产品名称都是Vaisala或其个人合作伙伴的商标。 严格禁止未经Vaisala事先书面同意,以任何形式包含的信息的复制,转移,分发或存储被严格禁止。 所有规格(包括技术)可能会更改,恕不另行通知。参考。B212058en-C©Vaisala 2022该材料受版权保护,所有版权都由Vaisala及其个人合作伙伴保留。保留所有权利。任何徽标和/或产品名称都是Vaisala或其个人合作伙伴的商标。严格禁止未经Vaisala事先书面同意,以任何形式包含的信息的复制,转移,分发或存储被严格禁止。所有规格(包括技术)可能会更改,恕不另行通知。
通讯员 原子(和分子)光谱中充满了信息,但遗憾的是,由于光谱线的精细结构通常无法解析,因此有些信息无法获取。因此,光谱学家不断努力提高光谱分辨率。然而,光谱分辨率的限制并不总是工具性的,而可能是原子组合所固有的。例如,由于气体原子的热运动,它们在光源传播方向上呈现出一系列速度。现在,如果 vo 是将原子从(尖锐)较低能态提升到(尖锐)较高能态所需的辐射频率(当原子相对于光源静止时),那么远离光源的原子每秒“看到”的波数(即频率)小于 vo。当然,远离光源的原子必须吸收它认为具有频率 vo 的辐射,因此相对于静止光源,该频率必须超过 vo。原子速度在源方向上的麦克斯韦-波尔兹曼分布确保了吸收频率的分布,即使每个原子都有尖锐的能级,即所谓的多普勒增宽。如果只选择相对于源的速度较窄的原子,使它们都以相同的频率吸收,则可以克服多普勒增宽。使用了几种速度选择技术,包括原子束和激光饱和光谱(参见《自然》,235,127;1972 年)。现在,两个研究小组分别描述了另一种处理多普勒增宽的优雅方法(Biraben、Cagnac 和 Grynberg,《物理评论快报》,23,643;1974 年;Levenson 和 Bloembergen,同上,645)。这些作者使用的技术的本质非常简单。这两个研究小组都研究了通常被禁止的 5S
准备好新的爆炸性或爆炸性混合物时,有必要检查其爆炸特性,以确保它们与初步计算或参考文献值一致。可以使用爆炸加速传单(传单板测试或DAX)的速度分布的测量来表征新材料。与传统但过时的HESS或KAST测试不同,PDV允许直接测量关键参数,而无需与标准样本立即进行比较。可以使用爆炸加速的薄金属传单的初始速度来推断爆炸反应区的参数。此外,圆盘中的冲击回响引起的速度步骤也可以用于确定爆炸产物的等渗膨胀路径,这是爆炸加载过程数值建模的重要输入。轮廓后部的限制(“海岸”)速度对应于从爆炸产物传递到传单的能量 - 爆炸物的加速能力。可以计算出特征性的Gurney速度。
双边带 DVOR 单边带或双边带 25 W 至 >100 W 可调节,步长为 0.1 W 108 至 117.95 MHz 50 KHz 频道 ± 5ppm 通过合成器进行数字编程 ± 0.5º ± 180º,步长为 0.01º <-70 dBc 通常为 1 + 48 个阿尔福德环路 水平 完整的本地和远程指示 是 完整的系统 / LRU 监控 以太网 / RS-232 和 RS-485 MTBF > 10,000 小时(单边带) MTBO > 20,000 小时(双边带) MTTR < 30 米(通常为 15 米) 600 VA(单边带) 750 VA(热待机) 一个 19 英寸标准机架 (33u):600 x 600 x 1467 毫米(宽 x 深 x 高)
本报告是美国政府资助工作的记录。美国政府及其任何机构或任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
摘要。我们报告了基于多普勒扩大温度计(DBT)的最初研究,以开发紧凑而实用的原代温度计。DBT传感器使用热原子的固有特性,即被探测的原子的光谱线特征的多普勒宽度。DBT传感器建立在主要的温度测定法基础上,不需要校准或参考,因此原则上可以实现可靠的长期现场热力学温度测量。在这里,我们描述了我们的方法,并报告了使用碱金属蒸气细胞进行初始概念验证研究。我们的重点是开发基于DBT的长期稳定温度计,该温度计可用于可靠地测量长时间的温度以及在核废存储设施中不切实际的传感器检索以进行重新校准的环境。
未来的交通系统高度依赖其交通工具(如车辆和飞机)提供的空间信息的完整性。在关键应用中(例如防撞),篡改这些数据可能会导致危及生命的情况。因此,安全地验证这些信息对于这些系统的安全至关重要。虽然在位置的安全验证方面有大量的工作,但节点的移动在文献中却很少受到关注。本文提出了一种新方法,可以安全地验证移动发送者在所有维度(即位置、速度和方向)的空间运动。我们的方案使用来自不同位置的多普勒频移测量来验证证明者的运动。我们为该方案的安全性提供了正式证明,并证明了其对空中交通通信的适用性。我们的结果表明,在当前运行的系统中,可以以零错误率可靠地验证飞机的运动。
多普勒测速仪利用多普勒效应测量船舶速度,多普勒效应表现为发射器和接收器或声能或电磁能反射器之间的相对运动导致的频率变化。多普勒效应的一个常见例子是火车。当火车靠近时,汽笛的音调会比平时更高。火车经过时,您可以听到音调的变化。