摘要 基于线性调频扩频(CSS)的无线通信在无线传感器网络(WSN)中得到了广泛的应用,这些传感器一般传输速率较慢,对数据速率的要求越来越高,然而由于CSS的传输速率较低,仍存在许多问题有待研究。本文介绍了一种基于线性调频的调制方法。与BOK(二进制正交键控)和DM(直接调制)方法不同,该调制技术是将多普勒频移植入线性调频信号中。该调制技术在单个脉冲内实现M进制调制。通过计算压缩脉冲峰值在脉冲持续时间内的位置,或通过在匹配滤波器中使用不同的参考线性调频信号来实现解调。
在儿童中看到,切除时可能可以治愈,而低级神经胶质瘤(WHO II级)主要是在年轻人中看到的,最终会发展为高级神经胶质瘤(3)。大多数神经胶质瘤(55.1%)是IV级的胶质母细胞瘤,其发生率为每100,000(1)。神经胶质瘤疗法的主要基石包括组织学诊断和去除肿瘤,放射治疗和药物治疗的手术(4)。关于适当切除策略的持续辩论,主要是由脑磁共振断层扫描(MRI)(5)和计算机断层扫描(CT)(6,7)的区域内的胶质瘤细胞表现出来的驱动,即使在组织学上正常的大脑区域(8)。几项研究证明了神经瘤手术中切除术的程度(EOR)和残留的肿瘤体积是影响患者结果的重要因素,因为它在无进展的生存和整体生存中衡量了(9-12)。因此,在保留神经功能的同时,尽可能多地切除肿瘤是普遍的实践(13)。的先决条件是在神经外科手术过程中病理组织以及雄辩的大脑区域的定位,可以使用神经道系统实现。这些系统通常利用术前成像,对患者进行了注册(14)。术中成像模式,例如计算机断层扫描(ICT)(15-17),磁共振断层扫描(IMRI)(18-20)(18-20)和超声(IUS)(IUS)(21-23)(21 - 23)可以整合到这些系统中,从而提高安全性和准确性。(35)。2003年Keles等。2003年Keles等。除了进行即时切除控制的可能性外,术中成像还可以帮助神经外科医生处理脑转移,这是一种描述的现象,主要是由于脑肿胀,脑脊液减少,减少肿瘤,脑缩回,脑缩回,脑部恢复和吸收后颅骨后颅骨术和颅骨术后(24),24,24,24,24,24,24,,24,24岁。估计大脑变形程度的首次努力可以追溯到1980年代(26)。从那时起,已经进行了各种尝试以解决此问题,包括光学扫描(27)和导航基于指针的表面位移测量(28,29),这是一种具有集成手术显微镜和视频分析(24),IMRI(30,31)和IUS(32 - 34)的立体定向系统(24)。在整个手术过程中已显示出大脑的转移,如Nabavi等人所证明的那样,可以通过串行MRI获取来部分解决。IMRI的主要局限性是其限制可用性,结构要求,时间消耗和高成本(36,37)。这些缺点都不适用于IUS(可以在不明显的外科手术过程中显着中断)进行IUS,如今已广泛可用,使用直接使用且具有成本效益(38)。现代超声系统可以完全整合到神经道设备中(39,40),并能够为神经瘤手术中的切除范围(40,41)和脑变形提供有关切除范围的信息(39)。分析了前后导航的IUS使用IUS的大脑移位测量值的首次描述在1990年代后期发表,当时在术前和术中术中易于识别的易于识别的能够识别的结构(如心室)标记以评估脑部转移(32 - 34)。
准备好新的爆炸性或爆炸性混合物时,有必要检查其爆炸特性,以确保它们与初步计算或参考文献值一致。可以使用爆炸加速传单(传单板测试或DAX)的速度分布的测量来表征新材料。与传统但过时的HESS或KAST测试不同,PDV允许直接测量关键参数,而无需与标准样本立即进行比较。可以使用爆炸加速的薄金属传单的初始速度来推断爆炸反应区的参数。此外,圆盘中的冲击回响引起的速度步骤也可以用于确定爆炸产物的等渗膨胀路径,这是爆炸加载过程数值建模的重要输入。轮廓后部的限制(“海岸”)速度对应于从爆炸产物传递到传单的能量 - 爆炸物的加速能力。可以计算出特征性的Gurney速度。
战术 GPS 着陆模式为选定的飞行航路点提供 3D 引导。飞行计划包含用户和数字航空飞行信息文件 (DAFIF) 航路点、出发、进近、初始程序和垂直障碍物数据,这些数据叠加在各种移动地图类型上,可通过 USB 提供引导和更新。AN/ASN-128E 可在最苛刻的环境中使用,提供全尺寸移动地图触摸屏显示器,在阳光下和夜视镜下也易于阅读。该系统经过实战验证,可提供作战优势。
5.1 实验概述 ............................................44 5.2 实验 .....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。45 5.3 高入射角实验 .................................47 5.4 飓风丽塔和菲利克斯脉冲对结果 ..........................49 5.5 飓风菲利克斯光谱处理初步结果: ........。。。。。。60
5.1 实验概述 ............................................44 5.2 实验 .....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。45 5.3 高入射角实验 .................................47 5.4 飓风丽塔和菲利克斯脉冲对结果 ..........................49 5.5 飓风菲利克斯光谱处理初步结果: ........。。。。。。60
摘要 - 正交时间频率空间(OTFS)调节显示可在正交频施加频率下(OFDM)上(OFDM)在延迟–多普尔频道上提供明显的错误性能性能。接收器需要通道脉冲响应才能执行OTFS检测。在这项工作中,我们使用数据框架中嵌入的飞行员符号分析了基于OTFS的通道估计:具有许多后卫零符号的飞行员符号位于包含信息符号的延迟–多普勒网格上。提出不同的符号排列,具体取决于通道相对于整数网格的整数还是分数多普勒路径。使用简单的阈值方法从一组接收的符号估算的通道信息。然后,通过消息传递(MP)算法将估计信息用于同一帧内的数据检测。数值结果将所提出的方案和OTFS方案的误差性能与在相似光谱和能量效率下的理想通道估计进行比较。此外,我们的结果表明,具有非理想通道估计的OTF仍然可以超过DM,而理想的通道估计。索引项 - 通道估计,延迟–多普勒通道,OTF,时间 - 频率调制。
通讯员 原子(和分子)光谱中充满了信息,但遗憾的是,由于光谱线的精细结构通常无法解析,因此有些信息无法获取。因此,光谱学家不断努力提高光谱分辨率。然而,光谱分辨率的限制并不总是工具性的,而可能是原子组合所固有的。例如,由于气体原子的热运动,它们在光源传播方向上呈现出一系列速度。现在,如果 vo 是将原子从(尖锐)较低能态提升到(尖锐)较高能态所需的辐射频率(当原子相对于光源静止时),那么远离光源的原子每秒“看到”的波数(即频率)小于 vo。当然,远离光源的原子必须吸收它认为具有频率 vo 的辐射,因此相对于静止光源,该频率必须超过 vo。原子速度在源方向上的麦克斯韦-波尔兹曼分布确保了吸收频率的分布,即使每个原子都有尖锐的能级,即所谓的多普勒增宽。如果只选择相对于源的速度较窄的原子,使它们都以相同的频率吸收,则可以克服多普勒增宽。使用了几种速度选择技术,包括原子束和激光饱和光谱(参见《自然》,235,127;1972 年)。现在,两个研究小组分别描述了另一种处理多普勒增宽的优雅方法(Biraben、Cagnac 和 Grynberg,《物理评论快报》,23,643;1974 年;Levenson 和 Bloembergen,同上,645)。这些作者使用的技术的本质非常简单。这两个研究小组都研究了通常被禁止的 5S
未来的交通系统高度依赖其交通工具(如车辆和飞机)提供的空间信息的完整性。在关键应用中(例如防撞),篡改这些数据可能会导致危及生命的情况。因此,安全地验证这些信息对于这些系统的安全至关重要。虽然在位置的安全验证方面有大量的工作,但节点的移动在文献中却很少受到关注。本文提出了一种新方法,可以安全地验证移动发送者在所有维度(即位置、速度和方向)的空间运动。我们的方案使用来自不同位置的多普勒频移测量来验证证明者的运动。我们为该方案的安全性提供了正式证明,并证明了其对空中交通通信的适用性。我们的结果表明,在当前运行的系统中,可以以零错误率可靠地验证飞机的运动。
多普勒测速仪被添加到此传感器套件中以提高滤波器的性能。作为滤波器的一个组成部分,磁罗盘和陀螺罗盘偏差被估计