量子点是零维纳米材料,尺寸范围为 1 至 20 纳米,与激子的玻尔半径相当,并产生三维量子限制效应。限制电子在三维空间中的运动使量子点的电子结构与原子相似,这就是为什么一些专家称量子点为“人造原子” [1, 2]。量子点因其独特的电、光、电化学和物理化学特性而成为细胞生物成像中的造影剂和用于治疗目的的纳米载体 [2-4]。检测纳米载体进入细胞及其与细胞过程的相互作用是药物发现和开发新型药物输送系统的关键点 [2]。量子点的荧光特性使追踪纳米载体和分子机制成为可能,以便通过药物或基因治疗进行诊断和治疗应用[5]。量子点
•如果孩子掌握了角色识别,您可以进一步走一步。在下一堂课之前的空白页面上,允许孩子以字母开头绘制任何项目。例如,教授字母“ B”时,给孩子一本书。邀请孩子探索物品(感觉,闻到它,甚至在适用时品尝),然后鼓励孩子画它。
摘要 — 随机数在游戏和赌博、模拟、传统和量子密码学以及随机计算等非传统计算方案中是一种宝贵的商品。我们建议使用耦合量子点对上单个移动电荷的位置测量来生成随机位。量子力学通过 Born 规则提供测量结果的真正随机性。可以使用对同一双量子点 (DQD) 系统进行一系列重复测量来生成随机位串。只需调整局部状态之间的失谐,就可以根据需要消除或调整任何偏向“0”测量值或“1”测量值的偏差。设备可调性提供了多功能性,使该量子随机数生成器 (QRNG) 能够支持不需要偏差或需要可调偏差的应用。我们讨论了该 QRNG 的金属点实现以及分子实现。基本量子力学原理用于研究随机位串生成的功耗和时间考虑因素。DQD 具有较小的尺寸,在金属实现中,可用于需要低温操作的情况(如量子计算的情况)。对于室温应用,可以使用分子 DQD。
摘要:荧光碳点(CD)近年来引起了越来越多的关注,这是因为它们在低毒性,对光漂白,较小的尺寸,易于功能化,生态友好型合成和多样化成像能力方面的最大优势。但是,CD的不清楚的光学机制极大地限制了其进一步的应用。了解CD的光学特性对于具有功能目的的顶级设计CD的可控开发具有重要意义。在这篇综述中,我们首先总结了CD的光吸收特性,并证明了CD的核心和壳的吸收光谱和电子过渡之间的关系。此外,我们总结了CD的常见荧光机制,包括表面状态,量子限制效应,共轭结构,自被捕的激子,边缘缺陷,自由的曲折位点和多隔音中心。最后,我们还讨论了CD的磷光特性。本综述为如何调整CD的荧光和磷光提供了新的见解。关键词:碳点,光学特性,荧光机制,光吸收分配,磷光
硅量子器件中的自旋是大规模量子计算的有希望的候选对象。基于门的自旋量子比特传感提供了具有高保真度的紧凑且可扩展的读出,但是,需要进一步提高灵敏度以满足保真度阈值和实现纠错协议中的快速反馈所需的测量时间尺度。在这里,我们将 622 MHz 的射频门控传感与在 500 – 800 MHz 频段工作的约瑟夫森参数放大器相结合,以减少读取纳米线晶体管中形成的硅双量子点状态所需的积分时间。根据我们实现的信噪比,我们估计平均保真度为 99.7% 的单重态-三重态单次读出可以在 1 μ s 内完成,远低于容错读出的要求,比不使用约瑟夫森参数放大器快 30 倍。此外,约瑟夫森参数放大器允许在较低的射频功率下运行,同时保持相同的信噪比。我们确定噪声温度为 200 mK,其中约瑟夫森参量放大器(25%)、低温放大器(25%)和谐振器(50%)的贡献,显示出进一步提高读出速度的途径。
中国科学院化学研究所,吉林长春 130022,中国 b 中国科学技术大学,安徽合肥 230026,中国 c 中国科学院大学,北京 100049,中国 d 广东省危险化学品应急检测重点实验室,
图 S2(a) 和 S1(b) 分别显示了合成状态和氢化硅化 Si-QDs(样品 1)的 Si 2p 光谱。合成状态的 Si-QDs 在 99.6 和 100.5 eV 处出现峰,分别对应于 Si 2p 1/2 和 Si 2p 3/2 ,这是元素 Si 的特征,还有其他氧化 Si 物质,Si 1+(100.4 eV)、Si 2+(101.9 eV)、Si 3+(102.6 eV)和 Si 4+(103.7 eV)。1, 2。元素 Si 峰的存在证实样品由 Si 制成。宽氧化峰表明氢化物端接的 Si-QDs 在转移过程中与环境氧发生了反应,而 Si-QDs 本质上并不存在这些反应。对于氢化硅化 Si-NC(图 S2(b)),我们发现元素 Si 峰与合成样品类似,还有对应于 Si-C(101.3 eV)和 Si- R/Si(O)R(101.8 和 102.3 eV)3 的峰,而氧化 Si 物质没有产生显著贡献。图 S2(c) 中所示的氢化硅化 Si-QDs 的 C 1s 光谱分别显示存在 C=C(284.5 eV)、CC(285.1 eV)和 C- Si(283.9 eV)4,没有氧化物相关峰,与 Si 2p 元素光谱一致。该结果与 FTIR 观察结果一致,并证实了氢化物封端的 Si-QDs 通过氢化硅化用烷基钝化。
注意:该报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府,或其任何机构,或其任何雇员,或其任何承包商,分包商或其雇员都不会对任何信息的准确性,完整性或有用性,设备,产品或程序所披露或代表其使用的任何法律责任或责任,或承担任何法律责任或责任。在此引用任何特定的商业产品,流程或服务,商标,制造商或其他任何特定的商业产品,不一定构成或暗示其认可,建议或受到美国政府,任何代理机构或其承包商或其承包商或分包商的认可,建议或偏爱。此处表达的观点和意见不一定陈述或反映美国政府,其任何机构或其任何承包商的观点和意见。
1.07.1 简介 189 1.07.2 单粒子方法 190 1.07.2.1 密度泛函理论 191 1.07.2.2 经验赝势方法 193 1.07.2.3 紧束缚方法 194 1.07.2.4 k ? p 方法 195 1.07.2.5 应变效应 198 1.07.3 多体方法 201 1.07.3.1 时间相关 DFT 201 1.07.3.2 组态相互作用方法 202 1.07.3.3 GW 和 BSE 方法 203 1.07.3.4 量子蒙特卡罗方法 204 1.07.4 应用于不同物理效应:一些例子 205 1.07.4.1 电子和空穴波函数 205 1.07.4.2 嵌入量子点中的带内光学过程 206 1.07.4.3 胶体量子点中带隙的尺寸依赖性 208 1.07.4.4 激子 209 1.07.4.5 俄歇效应 210 1.07.4.6 电子–声子相互作用 212 1.07.5 结论 213 参考文献 213
在提交本论文或学位论文作为埃默里大学高级学位要求的部分满足时,我特此授予埃默里大学及其代理人非排他性许可,以存档、提供和展示我的论文或学位论文的全部或部分,现在或以后已知的所有形式的媒体,包括在万维网上展示。我理解我可以选择一些访问限制作为本论文或学位论文在线提交的一部分。我保留对论文或学位论文版权的所有所有权。我还保留在未来作品(如文章或书籍)中使用本论文或学位论文全部或部分内容的权利。