1营养与食品科学研究所,营养与微生物群,波恩大学,53115 BONN,德国2 BONN 2 BONNANY 2 BONNY HOSPICY HOSPICY BONN基因组统计与生物信息学研究所,德国53127 BONN,德国BONN,BONN,BONN,BONN,BONN,BONN,BONN,BONN,BONN,BONN,BONN,BONN,BONNY 3 3 3波恩大学,德国53115 BONN 53115 BONN 5,波恩大学,波恩大学,53113 BONN,德国6里昂神经科学研究中心(CRNL),中心,国家de la Recherche Scientifique(CNRS),Institut de lasanté等人(Inserm lliemer),法国里昂,里昂7欧洲研究所,法国77300年,法国77300,87300 Control Interoception-Intervistion团队,巴黎脑研究所(ICM),法国75013,法国巴黎 *通信1营养与食品科学研究所,营养与微生物群,波恩大学,53115 BONN,德国2 BONN 2 BONNANY 2 BONNY HOSPICY HOSPICY BONN基因组统计与生物信息学研究所,德国53127 BONN,德国BONN,BONN,BONN,BONN,BONN,BONN,BONN,BONN,BONN,BONN,BONN,BONN,BONNY 3 3 3波恩大学,德国53115 BONN 53115 BONN 5,波恩大学,波恩大学,53113 BONN,德国6里昂神经科学研究中心(CRNL),中心,国家de la Recherche Scientifique(CNRS),Institut de lasanté等人(Inserm lliemer),法国里昂,里昂7欧洲研究所,法国77300年,法国77300,87300 Control Interoception-Intervistion团队,巴黎脑研究所(ICM),法国75013,法国巴黎 *通信
1 里尔大学,法国国立科学研究院,法国国家健康与医学研究院,里尔临床医学院,UMR9020-U1277—CANTHER—癌症异质性可塑性和治疗耐药性,F-59000 里尔,法国;marine.goujon@univ-lille.fr (MG);justine.woszczyk@gmail.com (JW);kelliii@hotmail.fr (KG);thomas.sw@hotmail.fr (TS);sandy.fellah@univ-lille.fr (SF);jeanbaptiste.gibier@chru-lille.fr (J.-BG);isabelle.vanseuningen@inserm.fr (IVS);romain.larrue@univ-lille.fr (RL);christelle.cauffiez@univ-lille.fr (CC);viviane.gnemmi@chru-lille.fr (VG); sebastien.aubert@chru-lille.fr (SA); nicolas.pottier@univ-lille.fr (NP) 2 CHU Lille, Service d'Anatomo-Pathologie, F-59000 Lille, France 3 CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France * 通讯地址:michael.perrais@inserm.fr;电话:+33-3-20-29-88-62 † 这些作者对这项工作做出了同样的贡献。
摘要 — 我们报告了使用两种缓冲层用于毫米波应用的超薄(亚 10 nm 势垒厚度)AlN/GaN 异质结构的比较结果:1) 碳掺杂 GaN 高电子迁移率晶体管 (HEMT) 和 2) 双异质结构场效应晶体管 (DHFET)。观察到碳掺杂 HEMT 结构表现出优异的电气特性,最大漏极电流密度 I d 为 1.5 A/mm,外部跨导 G m 为 500 mS/mm,最大振荡频率 f max 为 242 GHz,同时使用 120 nm 的栅极长度。C 掺杂结构在高偏压下提供高频性能和出色的电子限制,可在 40 GHz 下实现最先进的输出功率密度(P OUT = 7 W/mm)和功率附加效率 (PAE) 组合,在脉冲模式下高达 V DS = 25V 时高于 52%。
摘要:生命系统一方面能够对不断变化的环境做出协调反应(也称为适应),另一方面能够自我繁殖。值得注意的是,适应环境变化需要监测周围环境,而繁殖则需要监测自身。这两项任务看似独立,使用的信息来源也不同。然而,适应过程和繁殖过程都与基因组 DNA 表达的变化密不可分,而细胞则表现为一个不可分割的整体,其中看似独立的过程和机制既相互整合又相互协调。我们认为,在最基本的层面上,这种整合是由 DNA 的独特属性实现的,DNA 是一种双重编码装置,包含两种逻辑上不同类型的信息。我们回顾了不同复杂程度的生物系统,并推断这两种不同类型的 DNA 信息的相互转换代表了一种基本的自参考装置,是系统整合和协调适应反应的基础。
DNA双链断裂(DSB)是可以通过多种DNA修复途径修复的剧毒病变。多个因素可能会影响修复对给定途径的选择和限制,以保证维持基因组完整性。在V(D)J重组期间,RAG诱导的DSB(几乎)是通过非同理端连接(NHEJ)途径仅修复的,以实现抗原受体基因多样性的益处。在这里,我们回顾了将RAG生成的DSB修复到NHEJ的各种参数,包括RAG核酸酶产生的DNA DSB末端的特殊性,裂解后突触复合物的建立和维护,以及DNA末端的DNA末端的末端抗切除和(Microtro)的人体学修复。在这种生理背景下,我们强调某些DSB的DNA修复途径选择有限。
Sylvain Geny、Simon Pichard、Alice Brion、Jean-Baptiste Renaud、Sophie Jacquemin 等人。使用 CRISPR/Cas9 系统和双链 DNA 供体标记带有荧光报告基因的蛋白质。Arnaud Poterszman。多蛋白复合物,2247,Springer;Humana,第 39-57 页,2021 年,分子生物学方法,978-1-0716-1125-8。�10.1007/978-1-0716-1126-5_3�。�hal-03092017�
通过将聚合物掺入LDH纳米粒子中,可以获得具有独特功能和结构的聚合物基纳米复合膜,其可以通过逐层自组装方法定义为溶液插层、熔融插层或乳液插层(12,13)。在药物输送领域,无机材料的使用可能会产生有害的副产物并影响环境。相反,使用天然物质和绿色合成方法可以最大限度地减少能源消耗和污染物的产生,并改善人类健康(14,15)。因此,结构上由几种有机大分子(如碳水化合物、蛋白质、核酸和脂肪酸)组成的天然物质(如蜂蜜)引起了人们的兴趣(16,17)。天然基纳米复合材料通常被认为是无毒和生物相容性的,具有高化学稳定性和pH依赖性的溶解度(12,18)。它们通过廉价的工艺制备而成,并且可以轻松修改为具有独特的物理化学性质,以用于环境科学、催化、生物传感、化妆品和医学等不同应用(10、19)。尽管转换为生物来源可能会解决许多重大问题,但活性成分在储存过程中可能通过水解或氧化而快速降解,并且由于释放曲线受限导致治疗反应不足,因此凸显了使用生物来源的必要性
由于具有大规模量子计算的潜力,门控硅量子点中的自旋量子比特正受到越来越多的关注。这种自旋量子比特的读出最准确且可扩展的方式是通过泡利自旋阻塞 (PSB) 完成的,然而,各种机制可能会提升 PSB 并使读出复杂化。在这项工作中,我们介绍了硅纳米线中多电子低对称双量子点 (DQD) 中 PSB 的实验研究。我们报告了对非对称 PSB 的观察结果,当自旋投射到对中的一个 QD 时表现为阻塞隧穿,但当投射到另一个 QD 时表现为允许隧穿。通过分析 DQD 与读出谐振器的相互作用,我们发现 PSB 提升是由 7.90 μ eV 的不同电子自旋流形之间的大耦合引起的,并且隧穿是不相干的。此外,16 个电荷配置中的 DQD 磁谱能够重建 DQD 的能谱,并揭示提升机制是能级选择性的。我们的结果表明增强的自旋轨道耦合可能使硅纳米线中电子自旋的全电量子位控制成为可能。
摘要 — 本文详细介绍了时域 (TD) 测试,以直观地了解带通 (BP) 负群延迟 (NGD) 对双线微带电路行为的影响。为了确定 TD 测试期间要使用的输入信号的中心频率和带宽,对电路进行了频域 (FD) S 参数分析。这项初步分析首先借助仿真,然后借助测量进行,结果显示 15 MHz(分别为 8 MHz)频带的 NGD 在 2.345 GHz(分别为 2.364 GHz)左右。为了在 TD 中观察 2.345 GHz 左右的 NGD 影响,使用高斯脉冲整形的 2.345 GHz 正弦载波进行了 TD 实验。在这些 TD 测试中,BP NGD 特征通过输出包络得到验证,输出包络比输入包络提前出现上升沿和下降沿。实验还表明,当输入正弦载波位于锂电路 NGD 频带之外时,输出通常会延迟。