摘要:在许多行业中,使用腐蚀抑制剂的使用是占普遍的,以减少与腐蚀环境接触的金属和合金的腐蚀。天然提取物通常用于保护金属材料免受腐蚀。这些提取物作为腐蚀抑制剂的效率通常通过电化学测试评估,其中包括减肥测量等技术。在这项研究中研究了neem提取物(Azadirachta Indica)叶的提取物对0.1m HCl和0.1m NaOH溶液中锌金属腐蚀抑制的影响。索斯特技术用于静脉叶萃取。使用电化学和减肥技术研究了锌金属的腐蚀抑制。在含有0.1m HCl,0.1M NaOH和不同浓度的neEM提取物的测试溶液中进行了实验。通过溶解HCl的分析试剂(AR)(37%)和0.1M NaOH碱(40%)的分析试剂(AR)溶液(AR)溶液(40%)。还制备了用作抑制剂的INEM提取物的1 ppm – 5 ppm。100 mL测试溶液用于减肥测量。结果表明,在所有温度研究中,发现NEEM提取物抑制0.1m HCl和0.1M NaOH溶液中的锌腐蚀。提取溶液的浓度(PPM)的增加会降低0.1m HCl和0.1M NaOH溶液中锌腐蚀的速率。因此,它提高了抑制效率。腐蚀速率随时间增加,但随着提取溶液浓度的增加而降低。1。最后,发现印em叶提取物是一种极好的潜在腐蚀抑制剂。简介
1 验尸官 我是蒂赛德和哈特尔普尔验尸官区的高级验尸官 Clare Bailey 2 验尸官的法律权力 我根据《2009 年验尸官和司法法》附表 5 第 7 段和《2013 年验尸官(调查)条例》第 28 和 29 条作出此报告。 3 调查和审讯 凯特·伊丽莎白·奥唐纳于 2022 年 3 月 23 日在米德尔斯堡詹姆斯库克大学医院去世。我对她的死因展开了调查。2024 年 1 月 17 日和 18 日,我对她的去世进行了审讯。 她的死亡医学原因是: 1a. 多器官衰竭 1b. 全身性脓毒症 II. 颅内生殖细胞肿瘤化放疗后垂体功能减退。我留下了如下叙述结论 - 凯特·伊丽莎白·奥唐纳于 2022 年 3 月 16 日在詹姆斯库克大学医院接受了手术。她于 2022 年 3 月 17 日出院回家。她因手术患上败血症,并于 2022 年 3 月 23 日在詹姆斯库克大学医院去世。败血症源于她的肠道。未能对胃肠手术给予预防性抗生素导致了她的死亡。4 死亡情况奥唐纳小姐的既往病史包括生殖细胞脑瘤,在 4、7 和 9 岁时复发。她接受了化疗和放疗。9 岁时,她接受了高剂量的化疗,结果腰部以下瘫痪。她忍受着由此产生的慢性神经疼痛/损伤,并被开具了高剂量的每日止痛药。奥唐纳小姐有双重大小便失禁。治疗从间歇性导尿管变为耻骨上导尿管。
图。 了解有关搜索和排序技术的概念 UNIT-I 简介:抽象数据类型,单链表:定义、操作:遍历、搜索、插入和删除,双向链表:定义、操作:遍历、搜索、插入和删除,循环链表:定义、操作:遍历、搜索、插入和删除。 UNIT-II 堆栈:堆栈 ADT、数组和链表实现,应用程序-表达式转换和评估。队列:队列的类型:简单队列、循环队列、队列 ADT-数组和链表实现。优先队列、堆。 UNIT-III 搜索:线性和二进制搜索方法。排序:选择排序、冒泡排序、插入排序、快速排序、合并排序、堆排序。时间复杂度。图:基本术语、图的表示、图遍历方法 DFS、BFS。 UNIT IV 字典:线性列表表示、跳跃列表表示、操作 - 插入、删除和搜索。哈希表表示:哈希函数、冲突解决 - 单独链接、开放寻址 - 线性探测、二次探测、双重哈希、重新哈希、可扩展哈希。 UNIT-V 二叉搜索树:各种二叉树表示、定义、BST ADT、实现、操作 - 搜索、插入和删除、二叉树遍历、线程二叉树、AVL 树:定义、AVL 树的高度、操作 - 插入、删除和搜索 B 树:m 阶 B 树、B 树的高度、插入、删除和搜索、B+ 树。教科书:1. 使用 C++ 的数据结构,特别版-MRCET,Tata McGraw-Hill Publishers 2017。2. C++ 中的数据结构、算法和应用,S.Sahni,University Press (India) Pvt.Ltd,第 2 版,Universities Press Orient Longman Pvt. Ltd. 教育。
量子纠缠是量子力学最奇特、最有趣的性质之一 [1],它在理解量子多体系统的物理[2-4]以及支持各种量子应用(如量子计算[5]、量子传感[6]和量子通信[7])方面发挥着重要作用。目前,人们对量子纠缠的产生、操纵和检测有着浓厚的兴趣,正在许多物理系统中进行研究,包括光子[8]、原子[9-12]、离子[13],以及超导电路[14]和缺陷钻石[15]等固态系统。然而,在大多数系统中,即使是操作小型量子计算机,纠缠技巧也需要进一步改进。任意量子比特对的纠缠,尤其是不在附近的量子比特对的纠缠,对于具有良好连通性的可扩展量子系统尤为重要。尽管已经通过共模运动在囚禁离子中 [16,17] 和通过腔总线在超导电路中 [18] 实现了纠缠,但在大多数其他系统中还未能实现,包括与本文特别相关的里德堡原子系统。广泛使用的里德堡原子系统纠缠方案 [9-12] 是基于里德堡阻塞效应 [19] ,该效应禁止在阻塞半径 rb = ðC6 =ΩÞ1 =6 (由拉比频率Ω 和范德华相互作用强度 C6 定义) 内的原子之间发生双激发到里德堡能态。因此,在该方案 (参考文献 [19] 的模型 B) 中,所有且只有 rb 内的原子对同时纠缠,使这些纠缠成为短程纠缠 (d < rb)。在本文中,我们通过实验证明了弱耦合状态下的原子对纠缠(d>rb),这与文献 [19] 中的模型 A 密切相关。借助该模型,即使在存在较近的原子而不必纠缠的情况下,也可以在里德堡阻塞距离之外实现长距离原子纠缠。在弱耦合状态下,两个原子的双激发里德堡态相隔一个
连续体(BICS)中的结合状态是零宽(有限的寿命),即使它们与连续的扩展状态共存,但仍在系统中仍然存在的特征模式。产生的高频共振可能在光子整合电路,过滤,传感和激光器中具有显着应用。在本文中,我们证明了基于光子三轴腔的简单设计可以同时显示Fabry-Pérot(FP)和Friedrich-Wintgen(FW)BICS,并且它们的出现非常依赖于将腔附着在外部介质上的方式。我们首先考虑一个对称腔,其中长度D 3的存根被两个长度D 2的存根包围,所有存根均由长度D 1的段隔开。当两个端口之间插入腔时,我们在理论上证明了在长度d 1,d 2 2和d 3之间的可辨式条件下,在实验上证明了FP类型的对称BIC(S-BIC)和抗对称BIC(AS-BIC)的存在。S-BIC和AS-BIC可能会彼此交叉,从而产生双重变性的BIC。通过打破腔体的对称性,AS-BICS和S-BIC可以融合在一起,并实现FW型BIC,其中一种共振保持为零,而另一个共振却宽阔。通过考虑另外的两个配置,其中三端腔与一个或两个端口仅在一个侧连接起来,可以在结构内部诱导其他BIC。通过略微使BIC条件略有失调,后者转变为电磁诱导的透明度 /反射或FANO共振。最后,可以设计这种三重速度腔,以实现某些频率的接近完美吸收。使用同轴电缆在辐射频域中通过实验确认了从绿色功能方法获得的所有分析结果。
b'let g =(v,e)是一个简单,无方向性和连接的图。A con- nected dominating set S \xe2\x8a\x86 V is a secure connected dominating set of G , if for each u \xe2\x88\x88 V \\ S , there exists v \xe2\x88\x88 S such that ( u, v ) \xe2\x88\x88 E and the set ( S \\ { v })\ xe2 \ x88 \ xaa {u}是G的主导集。由\ xce \ xb3 sc(g)表示的安全连接的g的最小尺寸称为g的安全连接支配数。给出了图G和一个正整数K,安全连接的支配(SCDM)问题是检查G是否具有最多k的安全连接的统治组。在本文中,我们证明SCDM问题是双弦图(弦弦图的子类)的NP完整图。我们研究了该问题的复杂性,即两分图的某些亚类,即恒星凸两分部分,梳子凸两分部分,弦弦两分和链图。最小安全连接的主导集(MSCD)问题是\ xef \ xac \ x81nd在输入图中的最小尺寸的安全连接的主导集。我们提出a(\ xe2 \ x88 \ x86(g)+1) - MSCD的近似算法,其中\ xe2 \ x88 \ x86(g)是输入图G的最大程度)对于任何\ xc7 \ xab> 0,除非np \ xe2 \ x8a \ x86 dtime | V | o(log log | v |)即使对于两分图。最后,我们证明了MSCDS对于\ Xe2 \ x88 \ x86(g)= 4的图形是APX-Complete。关键字:安全的统治,复杂性类,树宽,和弦图。2010数学主题classi \ xef \ xac \ x81cation:05c69,68q25。
简介。— 令 ðð n; K; d ÞÞ 表示一个 n 量子比特量子纠错码,其代码空间维度为 K,距离为 d 。Eastin-Knill 定理 [1] 表明,当代码非平凡(d ≥ 2)时,SU ð K Þ 中可以横向实现的逻辑运算始终是有限子群 G ⊂ SU ð K Þ 。如果逻辑门 g 可以实现为 U 1 ⊗ ⊗ U n ,其中每个 U i ∈ U ð 2 Þ ,则称其为横向门。横向门被认为具有天然容错性,因为它们不会在物理量子比特之间传播错误。我们的重点是将单个逻辑量子比特编码为 n 个物理量子比特(K ¼ 2)。在这种情况下,Eastin-Knill 定理表明横向门必须是 SU(2) 的有限子群。SU(2) 的有限子群是循环群、双循环群和三个例外群。我们主要对三个例外群感兴趣:二元四面体群 2T、二元八面体群 2O 和二元二十面体群 2I。这三个群分别对应于四面体、八面体和二十面体的对称群通过双覆盖 SU ð 2 Þ → SO ð 3 Þ 的提升(见图1 )。有关 SU(2) 的有限子群的更多信息,请参阅补充材料 [2] 。群 2O 更广为人知的名字是单量子比特 Clifford 群 C 。许多代码横向实现 2O,例如 ½½ 7 ; 1 ; 3 Steane 代码和 ½½ 2 2 r − 1 − 1 ; 1 ; 2 r − 1 量子穿孔 Reed-Muller 代码。更一般地,所有双偶自对偶 CSS 代码都横向实现 2O。群 2T 是 Clifford 群的一个子群,还有许多代码具有横向门群 2T,最著名的例子是 ½½ 5 ; 1 ; 3 代码。与此形成鲜明对比的是,没有代码被明确证明可以横向实现 2I。考虑到 2I 在 [32] 中提出的“最佳绝对超金门集”中的作用,这一遗漏尤其明显,该集是最佳单量子比特通用门集。
我很荣幸为 1993 年出版的《驾驶舱资源管理》第一版撰写前言。我更荣幸地为这本更名为《机组资源管理》的第二版撰写前言,这一变化反映了在此期间发生的诸多发展。我们所有参与“CRM”早期发展的人都可以感受到一种自豪和满足,因为它从早期的一套相对简陋的概念和实践发展成为几乎普遍应用的规则,大大改善了我们在飞机、轮船、医疗环境、野火管理以及其他无数以前无法想象的涉及组织和团队环境中的复杂人类行为的应用中进行培训和操作的方式。1993 年,“google”这个动词还不存在。当我写这篇序言时(2009 年 2 月中旬),在谷歌上搜索“机组资源管理”一词,结果显示有 84,300 条结果,到本书出版时,这个数字肯定会大得多。有趣的是,在搜索词中用“驾驶舱”替换“机组”后,结果数量减少了 75%,这表明在各种环境中,关注点已从驾驶舱转向“机组”,这些环境与驾驶舱几乎没有物理相似之处,但都依赖于团队环境中复杂的人类表现来确保安全有效的运作。1993 年,全球定期航空运输运营的事故率为 1.9 起
[1] S. Abe。关于非广延物理中广义熵的 q 变形理论方面的注释。Phys. Lett.,A 224:326,1997 年。[2] S. Abe 和 AK Rajagopal。非加性条件熵及其对局部现实主义的意义。Physica,A 289:157,2001 年。[3] L. Accardi。非相对论量子力学作为非交换马尔可夫过程。Adv. Math.,20:329,1976 年。[4] A. Ac´ın、A. Andrianov、L. Costa、E. Jan´e、JI Latorre 和 R. Tarrach。三量子比特态的广义 Schmidt 分解和分类。Phys. Rev. Lett. ,85:1560,2000 年。[5] A. Ac´ın、A. Andrianov、E. Jan´e 和 R. Tarrach。三量子比特纯态正则形式。J. Phys.,A 34:6725,2001 年。[6] M. Adelman、JV Corbett 和 C. A Hurst。状态空间的几何形状。Found. Phys.,23:211,1993 年。[7] G. Agarwal。原子相干态表示态多极子与广义相空间分布之间的关系。Phys. Rev.,A 24:2889,1981 年。[8] SJ Akhtarshenas 和 M. A Jafarizadeh。贝尔可分解态的纠缠稳健性。E. Phys. J. ,D 25:293,2003 年。[9] SJ Akhtarshenas 和 MA Jafarizadeh。某些二分系统的最佳 Lewenstein-Sanpera 分解。J. Phys. ,A 37:2965,2004 年。[10] PM Alberti。关于 C ∗ 代数上的转移概率的注记。Lett. Math. Phys. ,7:25,1983 年。[11] PM Alberti 和 A. Uhlmann。状态空间中的耗散运动。Teubner,莱比锡,1981 年。[12] PM Alberti 和 A. Uhlmann。随机性和偏序:双随机映射和酉混合。Reidel,1982 年。[13] PM Alberti 和 A. Uhlmann。关于 w ∗ -代数上内导出正线性形式之间的 Bures 距离和 ∗ -代数转移概率。应用数学学报,60:1,2000 年。[14] S. Albeverio、K. Chen 和 S.-M. Fei。广义约化标准
前缀和词根 - a, an- 没有,不存在(呼吸暂停:暂时停止呼吸)。 ab- 远离(绑架:远离)。 abdomin(o)- 腹部(腹部:与腹部有关)。 acou- 听觉(声学:声音研究)。 acr(o)- 末端,尖端(肢端肥大症:以骨骼远端肿大为特征的疾病)。 ad- 到、朝向、附近(加合物:朝向)。 aden- 腺体(腺癌:腺组织癌)。 adip(o) - 与脂肪有关。 aero - 与气体或空气有关。 af- 到、朝向(传入:向中心点传送)。 alba- 白色(白化病:缺乏颜色,呈现白色)。 alg- 疼痛(头痛:头部疼痛/头痛)。 all- 表示另一种、其它或不同。 allo - 表示与常态的差异或偏离。 alve- 通道(肺泡:肺内的空气通道)。 ambi- 两侧(双手灵巧:用双手。 ambly- 受损、迟钝(弱视:视力受损)。 amphi- 周围或左右,双重(两栖:能够在陆地或水中生活)。 an - 无 ana - 向上、正面、再次向后(吻合术:两个血管的连接)。 andr(o)- 男性(雄激素:男性性激素)。 angi(o)- 血管、管道,通常是血管(血管成形术:修复狭窄血管的手术)。 aniso - 不相似、不平等或不对称 ankyl(o)- 弯曲、弯折、融合、僵硬(ankylosed:融合,如关节)。 ante- 之前,在前面(产前:分娩前)。 antero - 之前、前面、前部 anti- 对抗、抵消(解毒剂:抵消毒药影响的治疗方法)。 arthr(o) - 与关节有关(关节炎:关节发炎)。 antro - 与腔或腔有关。 appendi - 与阑尾有关 arch - 开始、第一、原则 archo - 与直肠/肛门有关 arteri - 与动脉有关 arth - 关节 asthenia - 无力 astro - 星形或类似星形。 atel- 不完美、不完整(脑缺如:脑发育不完全)。 aud i- 与听觉有关 auto- 自我(恐惧自我:害怕自己或孤独)。 axio - 与轴有关。 axo - 与轴有关。